
Slide 1

PYTHIA: Improving Datacenter Utilization
via Precise Contention Prediction for

Multiple Co-located Workloads

Ran Xu (Purdue), Subrata Mitra (Adobe Research),
Jason Rahman (Facebook),

Peter Bai (Purdue), Bowen Zhou (LinkedIn),

Greg Bronevetsky (Google), Saurabh Bagchi (Purdue)

Slide 2

Outline

• Motivation and Background

• Observations on Prior Solutions for Contention
Characterization

• Our Solution: PYTHIA

• Evaluation of PYTHIA

• Conclusion and Insights

Slide 3

Data Center Utilization is Low

• Total cost of ownership of datacenters is huge but utilization is low
– 30-40% is common in the best managed data centers

• Multi-core processors enable multi-way co-location of applications
on same server
– Lots of processing power on one node

– Lots of memory on one node

• Reason for low utilization?

Only a single application runs on one server

Paranoia

Fear of delaying Latency Sensitive (LS) applications

• Why?

Slide 4

Background: Contention

• Applications compete for underlying resources and cause resource
contention
– Compute cores

– Memory (capacity plus transfer bandwidth)

– Network

• Partitioning in hardware works well for some resources
– Compute cores

– Memory (capacity plus transfer bandwidth)

– Network

• Need to protect latency sensitive workloads from contentions to
maintain Quality of Service (QoS)

Slide 5

Outline

• Motivation and Background

• Observations on Prior Solutions for Contention
Characterization

• Our Solution: PYTHIA

• Evaluation of PYTHIA

• Conclusion and Insights

Slide 6

Prior Art: Characterize Contention

Bubble-Up: MICRO-2011

• Characterize:

1. How much contention a batch application causes

2. How much contention a Latency Sensitive (LS) application can tolerate

• Assign a Bubble score to batch workloads depending on how much contention it creates for
LS workloads

• Use a generic “Reporter” application as a stand-in for LS workloads

– Reduces characterization overhead from M×N to M

Slide 7

Our Observation #1:
Contention Effect is LS workload specific

Redis MongoDB
• Redis and MongoDB are LS applications

MongoDB sensitivity to contention > Redis sensitivity

Slide 8

Our Observation #2: Contention Effect
Changes with degree of co-location

• Multiple co-locations make combined content prediction more challenging
– Simple additive model does not work

– Simple model overestimates contention caused by combination of batch workloads

• Root cause: Mutual contention − Multiple workloads interfere with each other
– Error increases with degree of co-location

Slide 9

Outline

• Motivation and Background

• Observations on Prior Solutions for Contention
Characterization

• Our Solution: PYTHIA

• Evaluation of PYTHIA

• Conclusion and Insights

Slide 10

Our Solution: PYTHIA
• PYTHIA does workload-aware modeling of contention

– Goal: A single LS application co-located with multiple batch applications

• It creates a model for multi-way co-locations
– Simple linear regression model

– Easily fit with limited amounts of training data

• PYTHIA can provide very accurate predictions for the contention
induced by multiple co-located batch workloads
– Can be used for initial placement of workloads when submitted to the cloud

reducing the likelihood of contention

• PYTHIA incorporates dynamic monitoring and control schemes
– Reduces priority of batch application

– Needed, hopefully infrequently, to deal with unexpected changes in
application behavior

Slide 11

PYTHIA Workflow

Slide 12

PYTHIA: Mathematical Basis

• The weights cWi in our model represent the tendency for the associated batch
workload Wi to suffer interference from other batch workloads

– Higher cWi Batch application is more resistant to mutual contention

– Therefore it exerts higher cache and memory pressure on LS workload as a result of co-location

• Modeling Mutual Contention:

: Tendency of batch-workload Wi to suffer from other co-located workloads due
to mutual contention

• Learning coefficients from a system of equations by fitting observed data

: Number of times a batch workload Wi appeared in ith workload combination

: Observed combined contention for ith workload combination

: Contention (bubble-size) created batch-workload Wi when run alone with the
LS workload

Solve using
least-square optimization

Slide 13

PYTHIA Placement Algorithm
• x% QoS policy Minimum acceptable QoS is x% of the uninterfered

performance

PYTHIA_Find_Best_Server {
W <= Incoming workload
P <= QoS policy
FOR Server in List of Servers:

qos = PYTHIA_Predict_QoS (Server->Existing_Workload
+ W)

IF qos > P :
IF Server->Available Resource <

Lowest_Available_Resource :
Server_Chosen = Server
Lowest_Available_Resource = Server->Available

Resource

return Server_Chosen
}

• Best Fit
• Worst Fit
• First Fit

Slide 14

Outline

• Motivation and Background

• Observations on Prior Solutions for Contention
Characterization

• Our Solution: PYTHIA

• Evaluation of PYTHIA

• Conclusion and Insights

Slide 15

Evaluation Basics
• PYTHIA implemented using a combination of Python and shell

scripts and consists of 5.5 KLOC
• LS and batch workloads run on different cores

– Pin memory allocation on same NUMA socket as workload

• Applications:
– Two popular LS applications: Redis and MongoDB driven using YCSB
– Large variety of representative batch workloads drawn from the widely used

PARSEC and SPEC2006 benchmark suites
– 19 of 26 are co-locatable (4 PARSEC, 15 SPEC)

• Run on a 1,296-node homogeneous production cluster
• Each node: 2 sockets, 8 × 2 cores, 2.60 GHz, 64-bit Intel Xeon E5-

2670 processor cores, 32 GB memory, 20 MB L3 cache (LLC)
shared between cores on each socket

• 2 cores per workload maximum degree of co-location = 3 (one
socket dedicated to experimental monitoring)

Slide 16

Prediction Accuracy

Redis

MongoDB

Prediction Error
(Median)

Prediction Error (95th

Percentile)

• With just 5% sampling rate on the search space PYTHIA achieves decent
accuracy in predicting IPC

• Metric: Instructions Per Cycle (IPC). Lower is better.

Slide 17

Dynamic Throttling of Batch Workloads

• QoS of LS application Redis always stays above the QoS threshold, even under
high load

Slide 18

Improvement in Cluster Utilization

• Metric: Cluster Utilization = # Cores occupied / Total # cores in
the cluster
– Higher is better

• If QoS budget is tight, any solution will work as well

• For 95% QoS policy PYTHIA provides 72% improvement over Multi-Bubble-Up

• For 80% QoS policy PYTHIA provides close to 100% utilization

Slide 19

Reduction in # Active Machines

• PYTHIA can provide much tighter packing, reducing number of active machines
required for placement

• With 80% QoS policy, number of active machines required to handle the
incoming task is reduced by 44%

Slide 20

Conclusions and Insights
• Multi-way co-location is crucial for increasing datacenter utilization

– With multi-way co-location contention characteristics change

– Simple additive contention prediction is erroneous

• Impact of contention is LS workload dependent
– Increases offline profiling effort for characterizing contention

• PYTHIA can accurately predict contention for higher degree of co-
location
– Estimate contention due to multi-way co-locations using simple linear

regression model

– Use estimate for initial placement and dynamically throttle batch workload if
needed

• PYTHIA can significantly improve cluster utilization

• Drawback: Does not work well for unseen workloads

