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Data Center Utilization is Low

» Total cost of ownership of datacentersis huge but utilization is low
— 30-40% is common in the best managed data centers
» Multi-core processors enable multi-way co-location of applications
on same server
— Lotsof processing power on one node
— Lots of memory on one node

e Reason for low utilization?

Only asingle application runs on one server

 Why?

Paranoia
Fear of delaying Latency Sensitive (L S) applications
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Background: Contention

» Applications compete for underlying resources and cause resource
contention
— Compute cores
— Memory (capacity plustransfer bandwidth)
— Network

* Partitioning in hargware works well for some resources
— Compute cores

— Memory (capacity plustransfer bandwidth)
— Network y

* Need to protect latency sensitive workloads from contentions to
maintain Quality of Service (QoS)
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Prior Art: Characterize Contention

Characterize:

How much contention a batch application causes

How much contention a Latency Sensitive (LS) application can tolerate
Assign a Bubble score to batch workloads depending on how much contention it creates for
L Sworkloads

» Useageneric “Reporter” application as a stand-in for LS workloads
— Reduces characterization overhead from MxN to M
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Our Observation #1:
Contention Effect is LS workload specific
» Redisand MongoDB are LS applications

Redis
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Our Observation #2: Contention Effect
Changes with degree of co-location
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Multiple co-locations make combined content prediction more challenging
— Simple additive model does not work
— Simple model overestimates contention caused by combination of batch workloads

Root cause: Mutual contention — Multiple workloads interfere with each other
— Error increases with degree of co-location
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Our Solution: PYTHIA

* PYTHIA does workload-aware modeling of contention
— Goal: A single LS application co-located with multiple batch applications
* |t createsamodel for multi-way co-locations
— Simplelinear regression model
— Easily fit with limited amounts of training data
* PYTHIA can provide very accurate predictions for the contention
induced by multiple co-located batch workloads
— Can be used for initial placement of workloads when submitted to the cloud
reducing the likelihood of contention
* PYTHIA incorporates dynamic monitoring and control schemes
— Reduces priority of batch application

— Needed, hopefully infrequently, to deal with unexpected changesin
application behavior
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PyTHIA Workflow

Learn frequently used QoS and batch workloads
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PYTHIA: Mathematical Basis

» Modeling Mutual Contention:Bs = >, cwBw,

W, €S
‘W: : Tendency of batch-workload W, to suffer from other co-located workloads due
to mutual contention ]
: Contention (bubble-size) created batch-workload W; when run alone with the
LS workload
« Learning coefficients from a system of equations by fitting observed data
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§.j: Number of times a batch workload W, appeared in it workload combination

Bi  : Observed combined contention for ith workload combination

» Theweightsc,, in our model represent the tendency for the associated batch
workload W, to suffer interference from other batch workloads

— Higher ¢, = Batch application is more resistant to mutual contention
— Therefore it exerts higher cache and memory pressure on LS workload as a result of co-location
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PYTHIA Placement Algorithm

¢ X% QoS policy = Minimum acceptable QoS is x% of the uninterfered
performance

¢ Best Fit
* Worst Fit
e First Fit
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Evaluation Basics

* PYTHIA implemented using a combination of Python and shell
scripts and consists of 5.5 KLOC
» LS and batch workloads run on different cores
— Pin memory allocation on same NUMA socket as workload
» Applications:
— Two popular LS applications: Redis and MongoDB driven using Y CSB

— Large variety of representative batch workloads drawn from the widely used
PARSEC and SPEC2006 benchmark suites

— 19 of 26 are co-locatable (4 PARSEC, 15 SPEC)
* Run on a 1,296-node homogeneous production cluster
» Each node: 2 sockets, 8 x 2 cores, 2.60 GHz, 64-bit Intel Xeon E5-
2670 processor cores, 32 GB memory, 20 MB L3 cache (LLC)
shared between cores on each socket
» 2 cores per workload = maximum degree of co-location = 3 (one
socket dedicated to experimental monitoring)
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Prediction Accuracy

» Metric: Instructions Per Cycle (IPC). Lower is better.
Prediction Error Prediction Error (951
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e With just 5% sampling rate on the search space PY THIA achieves decent
accuracy in predicting IPC
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Dynamic Throttling of Batch Workloads
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QoS of LS application Redis always stays above the QoS threshold, even under
high load
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Improvement in Cluster Utilization

Metric: Cluster Utilization = # Cores occupied / Total # coresin
the cluster

— Higher is better
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If QoS budget is tight, any solution will work aswell
For 95% QoS policy PYTHIA provides 72% improvement over Multi-Bubble-Up
For 80% QoS policy PYTHIA provides close to 100% utilization
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Reduction in # Active Machines
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e PYTHIA can provide much tighter packing, reducing number of active machines
required for placement

e With 80% QoS policy, number of active machines required to handle the
incoming task is reduced by 44%

E@‘- Slide 19 PURDUE

UNIVERSITY

Conclusions and Insights

* Multi-way co-location is crucial for increasing datacenter utilization
— With multi-way co-location contention characteristics change
— Simple additive contention prediction is erroneous

» Impact of contention is LS workload dependent
— Increases offline profiling effort for characterizing contention

* PYTHIA can accurately predict contention for higher degree of co-

location
— Estimate contention due to multi-way co-locations using simple linear
regression model
— Useestimate for initial placement and dynamically throttle batch workload if
needed
* PYTHIA can significantly improve cluster utilization

» Drawback: Does not work well for unseen workloads
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