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Premise of approximate computing

 \Video streaming applications require low-latency processing
 Devices are resource constrained

Approximation techniques and parameters

Loop perforation:
for (i=0;i<n;i=i+ approx_level)

result = compute result(); \
Approximation parameters:

Loop memorization:
for (i=0;i<n;i=1i++)

if(i % approx_level == 0)

else

cached result = result = compute_result();

result = cached_result;

1 = Exact execution

/ The higher the more approximate

Progress in approximation in video processing

Video proc. w/ approx.

Optimal parameters
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Error mapping model, Searching policy and sample policy

B Wl X C
e CA model - C model plus

e C model —aware of canary

w, X C?

approximation parameters

CAD model — CA model plus

50 L .
The mystaken , . - .
quality reqirement - . ..t ErrOr mapplng mOdel
) This zone should be | R
8_45 ' considered while not.I Rt
- 45.1% approximation™ -..:
8 parameter misse_d ' ’{ PS N R
= 3
o 40 F = _
N — Wy
n
LS
=35 5 iy S -
‘S : s . - == Both IRA and VideoChef
o L / = Advantage of VideoChef
Up) 3 L 5 = = == JIhereal guality requirement _ S
o OV iy F = W 1, C, A)
[ 540 This zone violates the quality
gt A threshold, but may be overlooked P
25 T I ! | |
20 25 30 35 40 45 50

PSNR of canary output

Searching policy

Start from (1,1,1), then increase by 1 in
each dimension and follow the least-

feature vectors (row difference)

F=w-(1,CAD)

Hints to trigger a new search

e |-framesin MPEG-4 videos

error path until PSNR of full-sized

output reaches error threshold.

e Scene change detector

Evaluation

e 106 videos w/ 10 video filters and 9 3-stage filter pipelines

e 2 approximation techniques, each with 6 approximation levels
e Comparing 6 configurations and 2 PSNR thresholds

Timing performance

Bl Execution on full-sized input
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User Perception Study

-- Watching VideoChef and Oracle videos
side-by-side

Error mapping model
— CDF of the two error metrics
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Conclusion and contribution

e A system for performance and accuracy optimization of video
streaming pipelines in a data-dependent manner.

 Predictive model to accurately estimate the quality degradation in the
full output from the error generated when using the canary input.

e Efficient and incremental search technique for the optimal
approximation setting that takes hints from the video encoding
parameters to reduce the overhead of the search process.

 (Quantitative evaluation and user study
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