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Video proc. w/ approximation

Video processing

• (+) Final goal

• (+) Unbiased error metric
• (+) Overhead controlled
• (+) Close to optimal parameters

• (+) Parameters for each input
• (-) Biased error metric

• (-) Too conservative para. for all 
input.

• (-) Slow
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Evaluation
• 106 videos w/ 10 video filters and 9 3-stage filter pipelines
• 2 approximation techniques, each with 6 approximation levels
• Comparing 6 configurations and 2 PSNR thresholds

Conclusion and contribution
• A system for performance and accuracy optimization of video 

streaming pipelines in a data-dependent manner. 
• Predictive model to accurately estimate the quality degradation in the 

full output from the error generated when using the canary input. 
• Efficient and incremental search technique for the optimal 

approximation setting that takes hints from the video encoding 
parameters to reduce the overhead of the search process.

• Quantitative evaluation and user study

Progress in approximation in video processing

End-to-end system workflow
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Exact

Static approx

IRA

VideoChef

Oracle

Error mapping model, Searching policy and sample policy

User Perception Study
-- Watching VideoChef and Oracle videos 

side-by-side

Reduce
39.1% over exact
29.9% over static
14.6% over IRA
Within
20% of Oracle

Tracks the Oracle 
quality and the user 
specified quality 
threshold
violation < 5%

Approximation techniques and parameters
Loop perforation: 
for (i = 0; i<n; i = i + approx_level)
result = compute_result();

Loop memorization:
for (i = 0; i<n; i = i ++)
if(i % approx_level == 0)

cached_result = result = compute_result();
else

result = cached_result;

Approximation parameters:
1 = Exact execution
The higher the more approximate

Significant bias 
removed

Degree of difference Percentage
No difference 58.59%
Little difference 34.77%
Large difference 6.64%
Total difference 0

Error mapping model 
– CDF of the two error metrics

Error mapping model
• C model – aware of canary 

PSNR
𝐹𝐹 = 𝑤𝑤0 + 𝑤𝑤1 × 𝐶𝐶 + 𝑤𝑤2 × 𝐶𝐶2

• CA model – C model plus 
approximation parameters
𝐹𝐹 = w � (1, 𝐶𝐶, 𝐴𝐴)

• CAD model – CA model plus 
feature vectors (row difference)
𝐹𝐹 = w � (1, 𝐶𝐶, 𝐴𝐴, 𝐷𝐷)

Hints to trigger a new search 
• I-frames in MPEG-4 videos
• Scene change detector

Searching policy
Start from (1,1,1), then increase by 1 in 
each dimension and follow the least-
error path until PSNR of full-sized 
output reaches error threshold.

Both IRA and VideoChef

Advantage of VideoChef

Timing performance

Quality performance

Premise of approximate computing
• Video streaming applications require low-latency processing
• Devices are resource constrained
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