

SMARTADAPT: Multi-branch Object Detection Framework for Videos on Mobiles Ran Xu*, Fangzhou Mu^, Jayoung Lee*, Preeti Mukherjee*, Somali Chaterji*, Saurabh Bagchi*, and Yin Li^

Introduction

Multi-branch Object Detection Framework (MBODF): A solution that has many execution branches and one can dynamically choose from among them at inference time to satisfy varying latency requirements.

Key Observation: If one is allowed to select, at inference time, from a large set of fine-grained execution branches, the detection accuracy and latency can be significantly improved.

Problem Statement:

- How to expose the right set of execution branches in many existing object detectors
- How to schedule the optimal one at inference time

Multi-branch Object Detection Framework (MBODF)

- Tracking-by-detection scheme
- Tuning knobs at inference time
- Detector interval (di)
- Input resolution of the detector (rd)
- Number of proposals (*nprop*)
- Input resolution of the tracker (rt)
- Confidence threshold to track (ct)
- MBODF: multi-knob tracking-by-detection scheme, with the range and step sizes for each knob
- More knobs are better.
 - 5 knobs: 6.1x speed up with 2.4% mAP reduction
 - 2 knobs: 3.0x speed up with 2.4% mAP reduction
- More branches are slight better.
 - Because of lack of smarts in choosing the execution branch conditioned on the video content.

Computer Vision and Pattern Recognition (CVPR), 2022 Acknowledge to NSF CCF-1919197, CNS-2038986, CNS-2038566, CNS-2146449, AWS AI award, ARL W911NF-20-2-0026, W911NF-2020-221

^ University of Wisconsin-Madison * Purdue University

Branch Selection Problem

Optimization Goal of the Branch Selection Based on the Content:

 $b_{opt} = \operatorname{argmax} a(b, \hat{X}), s. t. l(b, \hat{X}) \le l_0$

The Workflow of SMARTADAPT:

- The scheduler extracts the content features.
- The scheduler predicts the accuracy with a content-aware accuracy predictor.
- The scheduler uses a branch selector to choose the optimal branch.
- The MBODF takes the branch and detects objects in the video frame.

	Content-aware scheduler		
Video frame	Content feature extractor Branch selector		

Content-aware Scheduler (CAS)

Oracle CAS: An Upper Bound

- 368-branch: 3.2%-4.6% mAP above w/o CAS
- 3942-branch: 6.6%-8.3% mAP above w/o CAS

Our CAS:

- Content feature extractors
- Content-aware accuracy predictor
- 5-layer fully connected neural network (NN)
- Multi-layer perceptrons (MLPs): joint modeling of content and latency requirement
- Candidate branches

Name	Dim.	Trainable	Description
light	4	No	Composed of height, width, number of objects, a
			aged size of the objects
HoC	768	No	Histograms of Color on red, green, blue channels
HOG	5400	No	Histograms of Oriented Gradients
ResNet50	1024	No	ResNet50 features from the object detector in
			MBODF, average pooled over height and width din
			sions, and only preserving the channel dimension
СРоР	31	No	"Class Predictions on the Proposal" feature (CF
			from the object detector of the MBODF, avera
			pooled over all region proposals, and only preserv
			the class dimension (including a background class)
MobileNet	1280	Yes	Efficient, effective feature extractor, average poo
			from the feature map before the fully-connected la
			and only preserving the channel dimension

- at 30/20/10 FPS
- The MBODF enhances

- accuracy improvement (our CAS)

Key Takeaways

MBODF for object detection -- higher accuracy and stronger adaptation Scheduling the optimal branch conditioned on the video content Much higher accuracy upper bound (oracle CAS) and moderate

xu943@purdue.edu