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1. Implementation

(a) ED+MB

di dv rt ct

1,2,4,8,20,100 D0,D3 100%,50%,25% 0.15,0.3

(b) YL+MB

di rd rt tv

1,2,4,8, 224,256,288,320, 100%*, MedianFlow,

20,50, 352,384,416,448 50%*, KCF, CSRT,

100 480,512,544,576 25% Optical

Flow.

(c) SSD+MB

di rd rt ct

1,2,4,8,20,100 192,256,320 100%,50%,25% 0.15,0.3

Table 1. Choices of the tuning knobs in the MBODF with EfficientDet

(ED), YOLOv3 (YL), and SSD object detectors (* indicates that it can only

support the MedianFlow object tracker). Notations are: di for the detector

interval, dv for the variant of the detector, tv for the variant of the tracker,

rd for the input resolution of the detector, rt for the input resolution of the

tracker, ct for the confidence threshold of objects to be tracked.

We implement MBODFs for four object detectors—

Faster R-CNN [8], EfficientDet [10], YOLOv3 [7], and

SSD [5]. The implementation details of Faster R-CNN are

in Table 2 of the main paper, and we include the imple-

mentation details of the other three object detectors here in

Table 1. Note that we allow two object detector variants

(dv)—EfficientDet D0 and D3, for ED+MB, and allow four

object trackers—MedianFlow [4], KCF [3], CSRT [6], and

dense Optical Flow [2], for YL+MB.

2. Supporting Experiments

2.1. ContentAware Scheduler (CAS)

We study FastAdapt as a baseline on how a content-

aware scheduler (FastAdapt+CAS) improves such off-the-

shelf adaptive object detection systems. Table 2 shows light

content features, though coming with only 4 values, are bet-

ter than the content-agnostic baseline by 0.5% mAP. How-

ever, directly applying off-the-shelf content features does

light HoC HOG Resnet50 CPoP MobileNet MobileNet* MobileNet+

Content-

agnostic

43.8%

All br. 44.3% 44.4% 44.3% 44.4% 44.8% 44.3% 44.0% 45.7%

200 br. 43.8% 44.1% 44.3% 44.1% 44.1% 43.8% 45.2% 46.1%

Table 2. Ablation study for the components in the CAS, over a FastAdapt

baseline (content-agnostic) on the ILSVRC 2015 VID validation dataset,

at a real-time 33.3 msec latency constraint (30 frames/sec video quality).
∗ denotes the CAS with the jointly trainable feature extractor and the

content-aware accuracy predictor. + denotes the CAS with joint model-

ing of content and latency requirement.

not always yield accuracy improvements—when we train

accuracy predictors on all branches, HoC, HOG, ResNet-

50, MobileNet, and even trainable MobileNet’s results are

all neutral or negative, compared to the light features’ re-

sults. Only the scheduler with the CPoP feature extrac-

tor achieves 0.5% mAP higher results than that with the

light features, owing to these features extracted from the

last layers of the object detector. Next, we narrow down

the number of candidate branches to 200 (from 1,036 avail-

able ones), according to the scheme described in the main

paper (Section 3.4, paragraph titled “Candidate Branches”).

In brief, we consider a subset of branches, top-K, which

covers a large fraction of the optimal branches. With this

reduced number of branches, we observe that a better per-

forming setting is FastAdapt+CAS with the jointly trainable

MobileNet feature extractor and accuracy predictor, with

1.4% higher mAP than the baseline. Reducing the num-

ber of branches can be considered as imposing a regularizer

that drives the model away from noisy branches, i.e. those

which just happen to be optimal for one (or a few) videos.

Finally, we further add the joint modeling of both con-

tent and latency requirements and reach an mAP of 46.1%,

which is 2.3% mAP higher than the content-agnostic base-

line. To summarize, it is hard to achieve an accuracy gain

by simply plugging in an off-the-shelf feature extractor.

Further, a smaller subset of branches using our technique

can make the entire model easier to train and converge.

This subsetting must be done carefully, ensuring (with high

likelihood) that branches that appear on the Pareto optimal



(a) Faster R-CNN + Multi-branch, or FR+MB (content-agnostic) chooses a branch of di = 20, rd = 288, nprop = 100, rt = 25%, and

ct = 0.05, given a 20 msec latency constraint. The protocol misses the squirrel on the third frame and localizes the squirrel wrongly on

the fourth and fifth frames due to the small resolution fed into the object detector (rd = 288) and too frequent calibration with the object

detector (di = 20).

(b) Faster R-CNN + Multi-branch + our Content Aware Scheduler, or FR+MB+CAS chooses a branch of di = 50, rd = 384,

nprop = 100, rt = 25%, and ct = 0.05, given a 20 msec latency constraint. The protocol detects the squirrel correctly on all five

frames, owing to the large resolution fed into the object detector (rd = 384) and using the object tracker on more frames (di = 50).

(c) Faster R-CNN + Multi-branch, or FR+MB (content-agnostic) chooses a branch of di = 8, rd = 288, nprop = 100, rt = 25%, and

ct = 0.10, given a 33.3 msec latency constraint. The protocol localizes the snake on the third and the fourth frames wrongly due to the

small resolution fed into the object detector (rd = 288).

(d) Faster R-CNN + Multi-branch + our Content Aware Scheduler, or FR+MB+CAS chooses a branch of di = 20, rd = 384,

nprop = 100, rt = 25%, and ct = 0.05, given a 33.3 msec latency constraint. The protocol detects the snake correctly on all five

frames, owing to the large resolution fed into the object detector (rd = 384) and using the object tracker on more frames (di = 20).

Figure 1. Qualitative results on comparing the content-agnostic FR+MB and content-aware FR+MB+CAS on two videos, one with a small squirrel, and the

second, with a still snake. The first frame out of every 10 frames is visualized. The white boxes (dashed lines) show the ground truth annotations, the red

boxes denote false positive boxes, and the green boxes denote true positive boxes. Predicted class labels and confidence scores are displayed on top of the

detection boxes.

curve are not left out. A MobileNet feature extractor with

the joint modeling of both content and latency requirements

yields the best content-aware results. This aspect of joint

training of the feature extractor gives another dimension of

performance improvement of content-aware models on top

of the content-agnostic performance (FastAdapt) (see Fig-

ure 6 of the main paper).

2.2. Visualization

In Figure 1(a) and (b), we show a visualization to demon-

strate the benefits of CAS over the MBODF with Faster R-

CNN (FR+MB). In this example, the latency constraint is

strict, only 20 msec per frame, and the scheduler has to ei-

ther choose a larger di (less frequent invocation of the detec-

tor and correspondingly, more frames on the object tracker),

a smaller resolution of the object detector rd, or more effi-

cient choices on other knobs. The content-agnostic protocol

FR+MB chooses a smaller resolution of the object detec-

tor to meet the latency constraint. This branch (di = 20,

rd = 288, nprop = 100, rt = 25%, and ct = 0.05) results

in missing detections and wrong localizations for this video

due to the small size of the object (small squirrel). In con-

trast, FR+MB+CAS, being content-aware, smartly chooses

a branch with a larger di and a larger rd. Such a branch al-

lows precise calibrations on the frames with the object de-

tector since the input resolution is higher (rd = 384) and



maintains correct detections with the object tracker over a

longer GoF. We show another example in Figure 1(c) and

(d) with a video of a still snake. The snake, with its camou-

flage, is localized wrongly by the FR+MB baselines in the

third and the fourth frames due to the small resolution of the

object detector (rd = 288). In contrast, FR+MB+CAS, be-

ing content-aware, detects the snake correctly on all frames

with a larger di and a larger rd. To summarize, given the

MBODF with thousands of execution branches, CAS is able

to choose a more accurate branch that is best adapted to the

content and subject to the latency constraint.

2.3. Postprocessing Techniques

Figure 2. Accuracy-latency frontiers with post-processing techniques in

the offline mode.

Several post-processing techniques have been developed

for offline video object detection. The key idea behind these

techniques is to re-score and link frame-level detection re-

sults. In the offline mode, REPP [9] and Seq-BBox Match-

ing (SBM) [1] improve over FR+MB by 2.60% and 2.38%

on average (averaged over all latency constraints). The re-

sults of the accuracy-latency Pareto frontier branches are

shown in Figure 2 (FR+MB+REPP and FR+MB+SBM).

We observe that the post-processing techniques yield a

larger accuracy improvement for the branches with higher

latency. This is because those branches perform much more

object detection than object tracking (di is smaller) and the

detection results from the object detector can benefit more

than those from the object tracker due to the nature of the

re-scoring techniques in REPP and SBM.

To study how the post-processing can benefit

FR+MB+CAS in the offline mode, we compare the

accuracy in Table 3 at stringent latency constraints.

The results show that both REPP and SBM can benefit

FR+MB+CAS, which is our best performing protocol.

Further, REPP is slightly better than SBM and makes

FR+MB+CAS+REPP the best performing protocol with

Protocols 20.0 ms 33.3 ms 50 ms 100 ms

FR+MB+CAS+REPP 66.8% 70.8% 73.4% 74.1%

FR+MB+CAS+SBM 66.7% 70.7% 72.5% 73.8%

FR+MB+REPP 66.4% 70.1% 73.3% 73.4%

FR+MB+SBM 66.2% 70.0% 72.4% 73.2%

FR+MB+CAS 64.1% 68.3% 69.8% 71.1%

FR+MB 63.6% 67.5% 69.7% 71.0%

Table 3. Accuracy comparison of FR+MB and FR+MB+CAS without

post-processing techniques, with SBM, and with REPP post-processing

techniques, given stringent latency constraints on the ILSVRC VID vali-

dation dataset.

post-processing techniques in the offline mode.

Figure 3. Latency of REPP and SBM in the online mode by the number of

objects to post-process in the past frames, measured on the NVIDIA TX2

embedded board.

We empirically find the latency cost of REPP and SBM

is significant larger in the online mode—277X and 385X

larger than those in the offline mode, averaged on the en-

tire dataset and measured on the TX2 board. Figure 3 un-

covers the root cause of such large latency cost by show-

ing the latency per frame vs. the number of objects in past

frames. The basic version of post-processing considers all

prior frames when doing post processing of the last frame.

Hence, when considering later frames of a video, the to-

tal number of objects that need to be considered is cumu-

lative and grows. We observe that as the number of ob-

jects accumulates in the later frames of a video, the latency

to post-process the results increases linearly and reaches 8

seconds per frame when post-processing 1,900 objects in

the past frames. Moreover, running post-processing for ev-

ery frame in the online mode instead of doing once for the

entire video (as is done in the offline mode) is another cause

of such high latency cost. On the other hand, we also find

that the accuracy improvement of the post-processing tech-

niques diminishes in the online mode as the technique has

to operate in streaming mode, i.e. it cannot go back and re-

fine the detection results of the past frames and it cannot use



the detection results from the future frames. For example,

the accuracy is 0.12%-0.61% mAP lower than that without

post-processing technique in the SBM case. Thus, we con-

clude that post-processing iteratively for every frame, even

for every N frames, is not acceptable for our model in the

online mode due to the significant latency cost and dimin-

ishing accuracy improvements.

2.4. Offline Profiling Cost

The cost of profiling MBODF to realize an Oracle sched-

uler and to derive a snippet-granularity dataset to study

content-aware accuracy is significant. Considering the

3,942-branch MBODF on top of the FRCNN object detec-

tor, in the basic case, we need to run every branch on the

training and test datasets to collect its latency and accuracy.

We deploy a set of engineering techniques to speed up the

profiling. We use the following techniques to reduce the

cost—(1) accuracy and latency profiling can be done sepa-

rately, the former on the server, and the latter, on the embed-

ded device but on a smaller set of videos since the latency

does not vary significantly across videos for a given branch,

(2) we profile the detector-only branches first and reuse the

object detection results for other execution branches with

di > 1, (3) the profiling of multiple execution branches

can trivially be done in parallel and distributed in multiple

servers. Combining these techniques, we are able to fin-

ish the profiling within 5 days on our two servers (specs in

Section 4 of main paper).
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