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Abstract

Several recent works seek to create lightweight deep net-

works for video object detection on mobiles. We observe

that many existing detectors, previously deemed computa-

tionally costly for mobiles, intrinsically support adaptive

inference, and offer a multi-branch object detection frame-

work (MBODF). Here, an MBODF is referred to as a so-

lution that has many execution branches and one can dy-

namically choose from among them at inference time to sat-

isfy varying latency requirements (e.g. by varying resolution

of an input frame). In this paper, we ask, and answer, the

wide-ranging question across all MBODFs: How to expose

the right set of execution branches and then how to sched-

ule the optimal one at inference time? In addition, we un-

cover the importance of making a content-aware decision

on which branch to run, as the optimal one is conditioned

on the video content. Finally, we explore a content-aware

scheduler, an Oracle one, and then a practical one, leverag-

ing various lightweight feature extractors. Our evaluation

shows that layered on Faster R-CNN-based MBODF, com-

pared to 7 baselines, our SMARTADAPT achieves a higher

Pareto optimal curve in the accuracy-vs-latency space for

the ILSVRC VID dataset.

1. Introduction

Object detection is arguably one of central problems in

computer vision. Much progress has been made over the

past few years in deep learning based object detectors. De-

spite their impressive accuracy results on standard bench-

marks, these models come at a price of their complexity

and computational cost. This imposes a major barrier to de-

ploy these models under resource-constrained settings with

strict latency requirements, such as real-time detection in

streaming videos on mobile or embedded devices. Several

recent works seek to address this challenge by designing

light-weight models on mobiles [11,14,35,44,58], in partic-

ular, for video object detection [6, 21, 22, 24]. The assump-

tion and the common belief are that the object detectors that

are optimized for accuracy, such as Faster R-CNN with a

ResNet-50 backbone, are too expensive for mobile vision.

Indeed, detectors optimized for accuracy are rather com-

plex, often trained with different input resolutions, and

equipped with multiple stages (e.g. proposal generation).

It is perhaps not surprising that these detectors can adapt

to different settings at inference time. Consider the exam-

ple of Faster R-CNN [30], one can reduce the input resolu-

tion or the number of proposals for a lower latency while

still maintaining a reasonable accuracy. Such combina-

tions of choices of tunable parameters would constitute a

multi-branch object detection framework (MBODF). The

Faster R-CNN detector using a specific input resolution and

a particular number of proposals from our previous example

could be considered as one execution branch.

Our key observation is that if one is allowed to select,

at inference time, from a large set of fine-grained execu-

tion branches, the detection accuracy and latency can be

significantly improved (see Figure 1). Then, the key re-

search questions are: How to expose the right set of exe-

cution branches in an existing object detector and then how

to schedule the optimal one at inference time?

An ideal scheduler must not only consider the branches

in the model and their properties (accuracy and latency), but

also the input content. For example, if the input video only

contains larger objects, using a lower input resolution for

the detector suffices. Another example is using inexpensive

tracking to replace the costly detector, if the video content

remains mostly stationary. However, the design of such a

scheduler is challenging for streaming videos. This is be-

cause the scheduler has to “predict” potential future content

change in order to select the best branch at the current time.

In this paper, we focus on the challenging and practical

task of streaming video object detection on mobile devices,

and present a simple adaptive object detection method. Our

key innovation is to leverage standard existing object de-

tectors (Faster R-CNN, EfficientDet, SSD, YOLO) to con-



struct an MBODF for adaptive video object detection. An

MBODF combines an object detector and an object tracker,

and provides many execution choices (branches).

We demonstrate that our method, notwithstanding its

simplicity, can adapt to a wide range of latency require-

ments, ranging from 10 to 50 FPS on a mobile GPU de-

vice — the NVIDIA Jetson TX2 (a widely used device for

embedded/mobile vision benchmarks [19, 33, 41, 43]) with

only a minor accuracy loss. For example, our method when

running at 20 FPS in streaming mode on TX2, achieves an

mAP of 70% on a large-scale dataset (ImageNet video ob-

ject detection benchmark). In contrast, the best performing

detector, MEGA [5] that supports streaming videos, has an

mAP of 75.4%, and runs only at 1.2 FPS. Further, SMAR-

TADAPT achieves 20.9% to 23.6% higher mAP than our

previous multi-branch algorithm [17] given the same con-

straint on the streaming latency (33-100 msec per frame)

(Figure 6, FR+MB vs. FastAdapt).

Next, we uncover the importance of making a content-

aware decision on which branch to run, as the optimal

one is conditioned on the video content. We explore a

content-aware scheduler — an Oracle one, and then a prac-

tical one, which uses various light-weight feature extrac-

tors, to adapt (at runtime) to the content. We show that our

content-aware Oracle scheduler achieves 6.6%–8.3% higher

mAP than a content-agnostic one (Table 3, FR+MB+Oracle

vs. FR+MB). With our realistic content-aware scheduler

(CAS), the gains are more modest, albeit, still present,

ranging from 0.1%–2.3% mAP (Table 3, FR+MB+CAS vs.

FR+MB, FastAdapt+CAS vs. FastAdapt). The strength of

SMARTADAPT is due to the synergistic use of a carefully or-

chestrated set of features that demonstrate both a low com-

putational overhead and high accuracy, and expose a fine-

grained set of branches using MBODF.

Thus, our contributions can be summarized as:

1. We point out that modern detectors are intrinsically adap-

tive, and can be re-purposed as an MBODF, achieving

varying latency and accuracy tradeoffs at inference time,

using a set of (individually) proven adaptive attributes.

2. Different from previous solutions [6, 54–56], our work

provides a systematic study on the design of MBODF.

The result is SMARTADAPT, which combines a set of

knobs (e.g., the input resolution and number of propos-

als), and tunes the ranges and step sizes of these knobs

in a fine-grained manner. SMARTADAPT enables deploy-

ing existing detectors on a mobile device to span a wide

range of latency requirements with minor accuracy drops.

3. We show that an MBODF can achieve significant perfor-

mance gains when the choice of the execution branches is

optimally conditioned on the input content (e.g. size and

speed of objects). We also take an exploratory step to-

wards practical content-aware adaptive object detection.

2. Related Work

Efficient Object Detection Models. Efficiency is

paramount on embedded or mobile devices, where power

is limited. Many solutions design more efficient network

architectures (e.g., [11,12,18,32,36,44,58]), leading to ob-

ject detectors tailored for mobiles such as SSDLite [32],

SqueezeDet [45], Pelee [42], EfficientDet [37], and Mo-

bileDets [49]. Several recent works explore temporal re-

dundancy to accelerate video object detection on mobiles,

by fusing features from nearby frames [21] or using a gating

function that allows convolutions to run on a sparse set of

locations [10]. While these methods can effectively reduce

the computation cost in terms of FLOPS, they are rarely

evaluated on mobile GPUs. Further, reduction in FLOPs

does not always translate to reduction in latency [10, 35].

Another stream of studies is to combine a costly ob-

ject detection module with a relatively inexpensive object

tracker module via the “tracking-by-detection” scheme [8,

57]. Our method also builds on “tracking-by-detection”,

yet significantly extends existing studies to consider a wide

range of configurations that may impact the detection per-

formance while focusing on mobile vision.

Adaptive Inference for Image Recognition. These models

leverage the content characteristics from the input images

and make execution decisions conditioned on them. Previ-

ous works integrate several sub-networks [16,40], or design

a network with multiple exits [15, 38, 51], or select input

resolution at inference time [55]. However, these works are

limited to adaptation in one dimension and with a narrow

range, and do not optimize the execution choice by ingest-

ing a rich set of input features available to object detection

pipelines. Further, they do not consider video recognition.

Adaptive Inference for Video Recognition. Unlike im-

ages, videos exhibit intrinsic temporal redundancy among

neighboring frames. Several recent works leverage this re-

dundancy for efficient video classification. These efforts

include designing efficient 3D networks [7, 34, 39], dynam-

ically selecting input frame or intermediate feature resolu-

tion [25,47], skipping redundant frames [9,48], reusing fea-

tures from previous frames [26], or exploring scheduling

strategies in the high-dimensional parameter space [50, 52–

54]. Such efforts greatly address challenges in mobile and

IoT systems [1].

Only a handful of previous works considered adaptive

video object detection, which is fundamentally distinct from

video classification. These works include ST-Lattice [4],

AdaScale [6], Skip-Conv [10], and our previous works of

ApproxDet [54] and FastAdapt [17]. Among these work,

ST-Lattice [4] is not designed for mobile vision. AdaS-

cale [6] and Skip-Conv [10] can not achieve explicit trade-

offs between latency and accuracy. The key difference be-

tween SMARTADAPT, ApproxDet, and FastAdapt is the

ability to switch to multiple fine-grained execution branches



using a content aware scheduler.

3. SMARTADAPT: Method and Design

Our goal is to maximize the accuracy of video object

detection models for streaming videos at stringent latency

constraints (e.g. 33 msec) on mobile GPUs. We now present

our solution design and describe our techniques.

3.1. Multibranch Object Detection Framework

Tracking-by-detection. This is our starting point to sig-

nificantly reduce the latency of the object detection models

with a minor accuracy reduction. Rigorously, we define a

Group of Frames (GoF) as a sequence of di (detection in-

terval) consecutive frames in a streaming video, in which

we run object detectors (e.g. Faster R-CNN, EfficientDet,

YOLO), on the first frame, and run object tracker (e.g. Me-

dianFlow, KCF) on the remaining frames. In the streaming

scenario, as we process the video frame-by-frame, an object

detector can run on any frame with no prerequisite while an

object tracker depends on the detection results, either from

a detector, or from the tracker on the previous video frame.

Considering our implementation on a Faster R-CNN object

detector (in PyTorch [27], with mobile GPU) and a Medi-

anFlow object tracker (in OpenCV [3], with mobile CPU),

the tracker runs up to 114X faster, boosting the efficiency.

Tuning Knobs at Inference Time. To further improve the

efficiency and avoid a large accuracy reduction, we design

tuning knobs for this tracking-by-detection scheme. Our

design explores the accuracy-latency tradeoff in five inde-

pendent dimensions: (1) the detector interval (di), control-

ling how often an object detector is triggered, (2) the in-

put resolution of the detector (rd), controlling the shape of

the resized image fed into the object detector, (3) the num-

ber of proposals (nprop), controlling the maximum number

of region proposals generated from the RPN module of the

Faster R-CNN detector, (4) the input resolution of the ob-

ject tracker (rt), controlling the shape of the resized image

fed into the object tracker, and (5) the confidence threshold

to track (ct), controlling a minimum threshold on the confi-

dence score of the objects below which the objects are not

tracked and output by the tracker. The multi-knob design

leads to a combinatorial configuration space as we can tune

each knob independently and in various step sizes. This

allows for a wide range of adaptations and is key to SMAR-

TADAPT’s impressive empirical results in what follows.

MBODF. We name the multi-knob tracking-by-detection

scheme, with the range and step sizes for each knob, a

Multi-branch Object Detection Framework (MBODF). An

execution branch in the MBODF is an instance of the values

of each knob. Note that not every branch in the configura-

tion space is valid, e.g. for branches that run object detector

on every frame (di = 1), the rt and ct knobs (which are

specific to the object tracker) are not relevant.

Figure 1. Accuracy comparison of a 5-knob MBODF and a 2-knob sub-

framework (input resolution, number of proposals).

Figure 1 shows the accuracy comparison between a 2-

knob 54-branch, a 5-knob 368-branch, and a 5-knob 3,942-

branch MBODF, where each point on the Pareto optimal

curve stands for the accuracy and latency performance of

a single branch on the ILSVRC VID dataset. A 5-knob

MBODF is much more efficient than a 2-knob MBODF

(rd and nprop). It achieves a 6.1X speedup, with only a

2.41% mAP reduction, compared to 3.0X speedup, with a

2.37% mAP reduction in the 2-knob MBODF. In contrast,

the 5-knob MBODF with 10X more branches (3,942) is

only slightly better than the one with a subset of branches

(368) at any given value of a latency constraint. The root

cause of such reduced accuracy improvement is the lack

of smarts in choosing the execution branch conditioned on

the video content. In other words, if only applying a sin-

gle static branch on an entire dataset, without finer-grained

content revelations (as revealed from Figure 3), one cannot

reap the benefit of the much larger-scaled MBODF.

3.2. Branch Selection Problem

A scheduler is a critical component in an MBODF that

decides which branch is the optimal one to run, subject to

some criteria. Considering an MBODF with m = |M| in-

dependent execution branches b ∈ {b1, b2, ..., bm} that are

capable of finishing the object detection task on streaming

videos, we use the latency of the branch as the constraint,

and maximize its accuracy as the optimization goal:

bopt = argmax
b

a(b, X̂), s.t. l(b, X̂) ≤ l0, (1)

where X̂ denotes the input video frame, l0 denotes the la-

tency constraints for each frame on average, and a(b, X̂)
and l(b, X̂) represent the accuracy and latency of the branch

b. Figure 2 shows the workflow of SMARTADAPT where

the scheduler takes the video frame as an input and deter-

mines the execution branch in the MBODF to run. Inside

the scheduler, the workflow is as follows: (1) extracts the

content features, (2) predicts the accuracy with a content-

aware accuracy predictor, and then (3) uses a branch selec-

tor to choose the optimal branch. Particularly, given the

tracking-by-detection scheme in the MBODF, where a GoF



Figure 2. Workflow of SMARTADAPT.

is a unit for scheduling, X̂ is relaxed to a GoF. In the stream-

ing scenario, a scheduler should be able to make a decision

at any frame xt in the streaming video where the X̂ is the

GoF starting from the frame xt.

As the optimal branch selection is conditioned on the

current frame and a few future frames1, a content-aware

scheduler leverages the content characteristics in such

a GoF to maximize accuracy. In contrast, a content-

agnostic scheduler considers the average accuracy of dif-

ferent branches across the entire dataset, which loses the

nuances of the snippet-level video characteristics.

In Figure 3, we show the Pareto optimal branches for

three randomly selected video snippets of different content

characteristics, and the one that inputs the entire dataset for

X̂ . We glean that the accuracy-latency frontiers vary sig-

nificantly from snippet to snippet and are different from the

“average” for the entire dataset (red curve). This motivates

the use of a content-aware scheduler for identifying the ex-

ecution branches for a video object detection pipeline. Ac-

cording to our study, 83.4% branches in the MBODF are

most accurate for at least one video snippet at any latency

requirement. Among a dataset of 1,256 video snippets, de-

rived from the ILSVRC VID dataset, we find 627 unique

sets of accuracy-latency frontier branches. Thus, we con-

clude that it is important to determine the optimal branch

for a given video snippet rather than use a single branch

for an entire dataset. This latter approach is also observed

with benefit in some prior works, addressed either by us-

ing a content-agnostic scheduler [17], or enabling multiple

sub-models to choose from [55, 56].

3.3. Contentaware Oracle Scheduler

We define a perfect content-aware scheduler for an

MBODF M an “Oracle” scheduler. Such a scheduler se-

lects the optimal branch bopt to execute. The accuracy-

latency performance of an Oracle scheduler establishes the

upper-bound performance of a content-aware scheduler,

something that has not been established up until now.

To realize an Oracle scheduler, we grant three imprac-

tical powers to it — (1) it has access to the future frames

in the GoF, (2) it has the annotation of the objects to cal-

culate the ground truth accuracy a(b, f(X̂)) so that no pre-

dictions are performed, (3) it exhaustively tests all avail-

able branches and selects the most accurate one, subject

to the latency constraint. Figure 4 shows the performance

of the Oracle scheduler on two 5-knob MBODF instantia-

tions, with 3,942 and 368 (a subset) branches and compares
1The size of the GoF is typically between 1 and 100 in the MBODF.

Figure 3. Pareto optimal branches

for three selected video snippets of

different content characteristics and

the whole dataset.

Figure 4. Upper bound perfor-

mance of a content-aware sched-

uler, i.e. an Oracle.

with a content-agnostic scheduler, which chooses a single

static branch for the entire dataset. We observe that the Or-

acle scheduler has a 3.2% to 4.6% mAP improvement in

the 368-branch MBODF at 10, 20, 30, and 50 FPS, four

typical latency constraints on mobile devices. This is rel-

ative to the baseline with 368 branches. Interestingly, the

mAP improvement of the Oracle scheduler is higher for

the 3,942-branch MBODF, 6.6%–8.3%, compared to the

above-mentioned 3.2%–4.6% (which is for the 368-branch

MBODF). In contrast, such large-scaled MBODF has no

benefit in the content-agnostic setting. The large gap moti-

vates a content-aware scheduler that can adapt over a large

and fine-grained range of knobs.

3.4. Designing a Contentaware Scheduler (CAS)

Our goal is to design a light-weight scheduler to de-

termine the content-specific execution branches on-the-fly,

bereft of the impractical powers that we granted to the Or-

acle. As Eq. 2 suggests, the branch selector in the sched-

uler requires a latency predictor and an accuracy predictor

to solve the optimization. The former has been studied in

our previous work [54] through a resource contention sen-

sor and a content-aware latency predictor on each execution

branch. In this work, we focus on the design of a content-

aware accuracy predictor based on simple content features.

Content Feature Extractors. A content feature extractor

aims to build a mapping f(·) from the frame representation

X̂ to its feature representation since the frame representa-

tion carries too much redundancy. The content feature ex-

tractor is expected to be discriminative so that the feature

values it carries can be used to predict the content-specific

accuracy of each execution branch. Then, a content-aware

accuracy prediction model aims to build a mapping a(·)
from the feature representation f(X̂) to the accuracy of a

given execution branch b. Thus, the scheduler model can be

formulated as follows:

bopt = argmax
b

a(b, f(X̂)), s.t. l(b, X̂) ≤ l0. (2)

A well-designed content feature extractor should be rich

in content characteristics, discriminative enough, and light-

weight in the computation. Table 1 summarizes the list of

our content features, specs, and descriptions. We start from



Name Dim. Trainable Description

light 4 No Composed of height, width, number of objects, aver-

aged size of the objects

HoC 768 No Histograms of Color on red, green, blue channels

HOG 5400 No Histograms of Oriented Gradients

ResNet50 1024 No ResNet50 features from the object detector in the

MBODF, average pooled over height and width dimen-

sions, and only preserving the channel dimension

CPoP 31 No “Class Predictions on the Proposal” feature (CPoP)

from the object detector of the MBODF, averaged

pooled over all region proposals, and only preserving

the class dimension (including a background class)

MobileNet 1280 Yes Efficient, effective feature extractor, average pooled

from the feature map before the fully-connected layer,

and only preserving the channel dimension

Table 1. Feature extractors in SMARTADAPT’s content-aware scheduler.

some light features that come with no cost to extract, i.e.

the height and width of the video frame, the number of ob-

jects, and average size of the objects. We then choose two

traditional vision features — Histograms of Color (HoC)

and Histograms of Oriented Gradients (HOG) to character-

ize the color and gradient information. As the object detec-

tor itself is a neural network with intermediate features, we

average pool one from the layer after the feature extractor

head of Faster R-CNN backbone, i.e. ResNet-50, and one

from the prediction logits on the object classes. These two

features are attractive as they incur no extra computation

cost, yet encode the object information within videos. Fi-

nally, we propose to use a widely used DNN-based feature

extractor, MobileNetV2 [32]. It is lightweight in terms of

the computation cost and jointly trainable with the down-

stream content-aware accuracy predictor. Naturally, at in-

ference time, the scheduler has to run ahead of the MBODF

and thus has to rely on extracted content features from the

previous GoF. Due to the temporal smoothness in video

frames [9, 25], this simplification works well in practice.

Content-aware Accuracy Predictor. A content-aware ac-

curacy predictor infers the accuracy of all branches in the

MBODF given a feature vector. We use a 5-layer fully con-

nected neural network (NN) with ReLU, 256 neurons in all

hidden layers, and residual connections [13]. As the dimen-

sions of the light features and other features vary signifi-

cantly in 1 to 3 orders of magnitude, we add a feature pro-

jection layer before the features are concatenated and fed

into the 5-layer NN. The feature projection layer projects

both light features and other high-dimensional features to

fixed 256-dimensional vectors so that they are equally rep-

resentative in the accuracy predictor. We use MSE loss and

train the NN on a derived snippet-granularity dataset from

ILSVRC VID (see Sec. 4 for details), where the ground

truth accuracy of the branches are profiled offline.

Joint Modeling of Content and Latency Requirement.

We additionally explore a network that jointly models con-

tent and latency requirement for branch selection. Different

from the previous design, this model does not pair with a

latency predictor and thus is simpler in design. Specifically,

we begin by embedding content and latency requirement

into separate feature vectors using multi-layer perceptrons

(a) A 368-branch MBODF (b) A 3,942-branch MBODF

Figure 5. Recall of top candidate branches (by percentage of the number

of branches in MBODF) from the Optimal Branch Election.

(MLPs). Following FiLM [28], our model regresses a set

of affine weights γ and biases β from the latency feature Fl

using another MLP and subsequently transforms the con-

tent feature Fc as F
′

c = γ · Fc + β. In doing so, our model

adapts to the current latency requirement through the mod-

ulation of content features. An MLP further processes the

modulated content features F
′

c and predicts accuracy of all

branches. We train our model using the same MSE loss as

before, except that we set the target accuracy of a branch to

zero when latency requirement is violated. We show in our

experiments that this joint modeling scheme is most effec-

tive under tight latency constraint.

Candidate Branches. Predicting on thousands of execu-

tion branches is challenging. SMARTADAPT narrows down

the number of candidate execution branches in the design

phase to top K. The intuition is that the top K execu-

tion branches should cover the majority of optimal branches

across videos of different content characteristics and differ-

ent latency constraints, for properly chosen K. We use the

method called Optimal Branch Election (OBE) to select the

K candidate branches. Figure 5(a) shows the recall of using

K branches (i.e. proportion where the optimal branch be-

longs to one of the top K), rather than all 368 branches. We

see that in the 368-branch MBODF, 10.1% branches suffice

to achieve 90% recall. Also, if we consider the candidate

branches for a particular latency constraint, even fewer can

be considered. To achieve a 90% recall, the percentages

of K branches are 1.4%, 2.7%, 3.3%, and 7.1%, given 20,

33.3, 50, and 100 msec latency constraints. Figure 5(b)

shows such relation on a larger-scaled MBODF with 3,942

branches, with a lower ratio of branches that need to be

considered. Thus, using top K candidates can effectively

reduces the cost of online scheduling and offline profiling.

4. Implementations

All models are trained on a server with two NVIDIA

P100 GPUs; evaluated on NVIDIA TX2 with a 256-core

NVIDIA Pascal GPU on a 8GB unified memory. Our

method is implemented in PyTorch, yet further speedup us-

ing TensorRT might be possible.

Profiling. Once the tuning knobs are determined for an ob-

ject detector, it is important to determine the ranges and step



di rd nprop rt ct

1,2,4,8 224*,352,384,288,320, 3*,5*,10*,20* 25%,50% 0.05,0.1

20,50,100* 416*,448*,480*,512* 100, 1000 100% 0.2,0.4*

Table 2. Choices of the tuning knobs in the MBODF with Faster R-CNN

object detector in the 368-branch variant (* indicates additional choices in

the 3,942-branch variant).

sizes of values for each knob. We profile the multi-knob

tracking-by-detection scheme and evaluate the accuracy-

latency relation on each knob. We then determine the ranges

and step sizes according to the monotonic range of such re-

lation and the constraints of each knob. Finally, we imple-

ment our MBODF on top of Faster R-CNN (a 368-branch

and a 3,942-branch variant), EfficientDet, YOLOv3, and

SSD. Specifically, we implement 5 tuning knobs for the

Faster R-CNN object detector (Table 2). Those for the other

detectors are in the Supplement.

Snippet-granularity Dataset. We derive a snippet-

granularity dataset to study the content-aware accuracy

of the execution branches. Given a video dataset

{v1, v2, ...vh} with h videos, we clip each video into l-
frame video snippets, and each video snippet is our unit

for evaluating content-specific accuracy. Too small an l
value makes mAP meaningless, and too large an l, reduces

the content-aware granularity. We choose l = 100 for the

ILSVRC 2015 VID dataset. To further enlarge the training

dataset, we use sliding windows to extract more video snip-

pets. Supposing a temporal stride of s frames, every l-frame

snippet starting at the frame whose index is the multiple of

s is selected as a video snippet (we use s = 5), enlarging

the training dataset by a factor of l/s.

Training content-aware scheduler model. We train our

content-aware accuracy predictors for 400 epochs, with a

batch size of 64, a weight decay of 0.01, and an SGD opti-

mizer of fixed learning rate of 0.01, and momentum of 0.9.

5. Experiments

Our experimental results are composed of three parts.

First, we evaluate our best performing models over multiple

backbone object detectors and compare with the content-

agnostic baselines. Second, we perform ablation studies

of our techniques over the MBODF with Faster R-CNN

(FR+MB+CAS) and FastAdapt (FastAdapt+CAS) proto-

cols and study the impact of content-aware techniques. Fi-

nally, we discuss the benefit of post-processing methods on

the accuracy and latency cost of both the offline profiling

and the online scheduler. We report results on the ILSVRC

2015 VID dataset and a snippet-granularity derivative of the

dataset (only Table 4), and use different latency constraints

to demonstrate the strength of our method. We achieve 70%

mAP accuracy at 20 FPS and lead the accuracy frontier at

a wide range of latency constraints. Before we present our

results, we summarize our evaluation scenario, dataset and

metrics, and naming convention for the protocols.

Streaming Inference. As we study the efficient and adap-

tive object detection systems on mobiles, the typical us-

age scenario is to process the videos at the speed of their

source, i.e. 30 FPS, in the streaming style. This means (1)

one cannot use the raw video frame or features of video

frames in the future to refine the detection results on the

current frame, (2) one cannot refine the detection results of

past frames, and (3) the algorithm should process the video

frame-by-frame in the timestamp order. We discuss the

comparison with other protocols in the offline mode with

post-processing techniques in Sec. 5.2.

Dataset and Metrics. We use ILSVRC 2015 VID

dataset for our evaluation. Particularly, we train our fea-

ture extractors and accuracy predictors on our snippet-

granularity dataset derived from the ILSVRC 2015 VID

training dataset, which contains 3,862 videos. Our snippet-

granularity dataset of 1,256 video snippets is derived from

10% videos in the training dataset, considering the signif-

icant amount of execution branches in our MBODF. We

evaluate our models on both ILSVRC 2015 VID valida-

tion dataset and our snippet-granularity dataset. The former

contains 555 videos, and we evaluate object detection per-

formance by reporting (1) mean Average Precision (mAP)

at IoU=0.5 as the accuracy metric and (2) mean execution

latency per frame on the NVIDIA Jetson TX2 as the la-

tency metric. The latter has 1,965 video snippets. Here we

evaluate our accuracy prediction results, and report Mean

Squared Error (MSE), Spearman Rank Correlation (SRC),

and Recall of the most accurate branches between the pre-

dicted accuracy and the ground truth accuracy.

Protocols. We formulate several protocols that implement

a set of techniques for efficient video object detection. We

replicate the SOTA object detectors and create MBODF

for each model by designing tuning knobs and determining

ranges and step sizes for each knob (Sec. 4). The variants

of SMARTADAPT (anything with “MB” or “CAS” in the

name) and baselines are as follows:

• FR+MB Our MBODF on top of the Faster R-CNN [30]

object detector with ResNet-50 [13] and FPN [20]. We

have a 368-branch and a 3,942-branch variant due to the

different ranges and step sizes in each knob.

• ED+MB: Our MBODF on EfficientDet [37].

• YL+MB: Our MBODF on YOLOv3 [29].

• SSD+MB: Our MBODF on SSD [23].

• FastAdapt [17]: An adaptive object detection sys-

tem with 1,036 approximation branches and a content-

agnostic scheduler.

• ApproxDet [54]: Another adaptive object detection sys-

tem, but less efficient than FastAdapt.

• FR+MB+CAS: Our content-aware scheduler with our

MBODF on top of Faster R-CNN.

• FastAdapt+CAS: Our content-aware scheduler with an



Figure 6. Accuracy-latency frontier. Our MBODF on top of Faster R-CNN

(FR+MB) achieves higher accuracy at a wide latency range (2 - 85 FPS).

off-the-shelf adaptive object detection system.

• AdaScale [6]: an adaptive and efficient video object de-

tection model with a scale knob. We evaluate a multi-

scale (MS) variant as its main design, and include several

single scales (SS) for comparison.

• Skip-Conv ED D0 [10]: We use the norm-gate variant

of Skip-Conv on top of an EfficientDet D0 model. The

original implementation only shows MAC and wall time

reduction on CPUs. We evaluate Skip-Conv on the mo-

bile GPU to compare with SMARTADAPT.

• MEGA RN101 [5]: ResNet 101 version of MEGA. In

our streaming inference scenario, we cannot access the

frames or features in the future or refine the detection

in the past. Thus, we report the accuracy of the still-

image object detection baseline in MEGA. This applies

to SELSA RN101 and REPP YOLOv3 as well.

• SELSA RN101 [46]: ResNet-101 version of SELSA.

• REPP YOLOv3 [31]: YOLOv3 version of REPP.

5.1. Performance of MBODFs

Figure 6 shows the accuracy and latency performance of

each protocol, in which the latency scale is logarithmic to

include a large variety of protocols. We can observe that our

FR+MB protocol leads the accuracy-latency frontiers com-

pared to baselines and other MBODFs in our work. Particu-

larly, FR+MB achieves 67.5% mAP at 30 FPS, 69.7% mAP

at 20 FPS, 71.0% mAP at 10 FPS on the TX2. The adap-

tation range is 40.5x in latency (9.8x within 3% accuracy

reduction) and the accuracy is superior to all other proto-

cols given the same latency constraint. On the other hand,

our ED+MB, YL+MB, and SSD+MB also enhance the effi-

ciency to achieve the real-time inferencing speed (30 FPS).

As for baseline protocols, MEGA and SELSA, with their

deeper ResNet 101 kernel, they are 2.9% and 1.1% more ac-

curate than our most accurate branch in FR+MB and much

slower than us (running at 1.2 and 0.4 FPS). REPP, Skip-

Protocols 20.0 ms 33.3 ms 50 ms 100 ms

FR+MB+Oracle (3,942 br.) 71.5% 75.8% 76.3% 77.6%

FR+MB+Oracle (368 br.) 67.1% 72.1% 72.9% 74.8%

FR+MB+CAS 64.1% 68.3% 69.8% 71.1%

FR+MB 63.6% 67.5% 69.7% 71.0%

FastAdapt+CAS N/A 46.1% 47.1% 50.3%

FastAdapt N/A 43.8% 46.4% 49.0%

ED+MB 45.1% 51.3% 52.0% 52.5%

SSD+MB N/A 45.5% 46.3% 46.7%

YL+MB N/A 42.1% 45.8% 47.3%

ApproxDet N/A N/A N/A 46.8%

Table 3. Accuracy comparison of SMARTADAPT over all efficient base-

lines given stringent latency constraints on the ILSVRC VID validation

dataset. The object detectors FR, ED, SSD, and YOLO cannot meet the

100 msec latency constraint with a MBODF and thus not shown. N/A

means that the accuracy is unusably low.

metrics MSE SRC Recall

features 368 br. 3,942

br.

368 br. 3,942

br.

368 br. 3,942

br.

baseline 0.091 0.109 0.377 0.376 0.354 0.343

light 0.083 0.109 0.385 0.385 0.368 0.347

HoC 0.083 0.109 0.387 0.385 0.369 0.348

HOG 0.084 0.103 0.386 0.384 0.347 0.348

MobileNet 0.082 0.102 0.385 0.385 0.368 0.347

MobileNet Tr. 0.083 N/A 0.385 N/A 0.361 N/A

Table 4. Evaluation of our content-aware MBODF on top of Faster R-

CNN object detector with different content extractors against the content-

agnostic MBODF (baseline) on the snippet-level dataset. N/A means the

training cannot finish in a reasonable time.

Conv, AdaScale, FastAdapt and ApproxDet are both worse

than our FR+MB protocol with lower accuracy and higher

latency. To conclude, our MBODFs on top of four pop-

ular object detectors can greatly enhance the efficiency to

achieve real-time speed and the best of them, FR+MB, leads

the accuracy-latency frontier and has comparable accuracy

with the accuracy optimized models.

We then look into all adaptive and efficient protocols

that are able to run within 100 msec per frame (10 FPS

speed) and examine the accuracy at 50, 30, 20, and 10 FPS

in Table 3. The results show that FR+MB+CAS achieves

marginally better accuracy results than FR+MB by 0.1%

to 0.8% mAP through its content-aware scheduler. Com-

pared to the FastAdapt baseline, our content-aware sched-

uler achieves a higher benefit, 0.7% to 2.3% mAP improve-

ment. Note that our CAS results are still far from our Oracle

results because (1) we cannot exhaustively run every branch

and select the most accurate one, (2) we cannot access anno-

tations online to calculate the ground truth accuracy, and (3)

we cannot access future frames and the scheduler’s choice

is based on the features of current and past frames. To

summarize, in addition to the illuminating results in Fig-

ure 6, our exploration on the content-aware design boosts

the accuracy-latency frontier further.

We further evaluate the CAS with different feature ex-

tractors. On the snippet-level dataset, Table 4 shows the

MSE, SRC, and recall of our full stack of techniques with

different off-the-shelf and trainable feature extractors, on

top of a 368-branch and a 3,942-branch FR+MB. The re-



Figure 7. Latency breakdown in the

CAS, per-run, measured on the TX2

board. Note that the CAS does not

run on every frame. Thus higher

cost is acceptable.

Figure 8. Latency of the content-

aware scheduler averaged along the

video, on top of the latency of the

execution kernel of FastAdapt.

sults show consistent lower MSE, higher SRC, and recall in

the CAS of all feature extractors compared to the content-

agnostic baseline. We include a further detailed ablation

study with feature extractors, candidate branches, and joint

training and modeling in the Supplement.

5.2. Further Discussions

Impact of Post-processing & Accuracy in Offline Mode.

To fairly compare SMARTADAPT with the accuracy opti-

mized models, we apply REPP [31] and Seq-BBox Match-

ing (SBM) [2] post-processing methods to our detection re-

sults in the offline mode. The averaged mAP improvement

over FR+MB is 2.60% and 2.38%. We show the details of

the accuracy improvement on each accuracy-latency fron-

tier branches of the two approaches in the Supplement.

While the latency cost of these processing techniques is

heavily dependent on the number of objects in a given

video, the overall averaged latency cost per frame is 24

msec for REPP and 9 msec for SBM. Furthermore, we have

evaluated these post-processing methods in online mode.

We find that the latency cost in such online mode is more

than 100X higher than that in the offline mode since the

post-processing is iteratively done on every frame. This

points to the difficulty of improving accuracy in streaming

content through existing post-processing techniques.

Offline Profiling Cost. The cost of profiling MBODF to

realize an Oracle scheduler and derive a snippet-granularity

dataset to study content-aware accuracy is significant. Con-

sidering the 3,942-branch MBODF on top of the FRCNN

object detector, in the basic case, we need to run every

branch on the training and test datasets to collect its latency

and accuracy. We deploy a set of engineering techniques

to speed up the profiling by parallelizing it (accuracy pro-

file can run on the server, not on the mobile device) and

reusing results across branches (details in Supplement).

Combining these techniques, we are able to finish the pro-

filing within 5 days on two servers (specs in Sec. 4).

Overhead of the Content-aware Scheduler (CAS). While

the CAS improves accuracy-latency frontier of the MBODF,

we further evaluate its latency overhead because a naı̈ve de-

sign will result in additional overhead of the scheduler on

top of the latency of MBODF. Figure 7 shows the latency

breakdown in the CAS. The cost of light feature is zero, and

the cost of ResNet50 and CPoP feature extractors are minor,

since ResNet50 and CPoP features come from the object de-

tector itself. The costs of the HoC and HOG features are in-

termediate, between 20 to 35 msec per run, adding a minor

overhead considering its triggering frequency ranges from

every 8 to 50 frames. The cost of a MobileNetV2 features,

whether trainable or not, is around 65 msec per run.

Figure 8 further evaluates FastAdapt+CAS with a 33.3

msec latency constraint. The latency of the execution kernel

is almost the same and summed latency meets the latency

budget for all feature extractors (including the most expen-

sive MobileNetV2), owing to a conservative branch selec-

tion strategy where the branch selector uses 95th percentile

latency as the criteria to choose the branch. Furthermore,

we find that the latency cost of MobileNetV2 can be re-

duced by 20% using a smaller input resolution of 64x64x3,

with similar performance —one of many optimizations that

we can leverage to further reduce the cost.

6. Conclusion

We have demonstrated in a multi-branch (video) object

detection framework (MBODF) how to expose the right

set of execution branches, and then, how to schedule the

optimal one at inference time. We uncovered the impor-

tance of making a content-aware decision on the execu-

tion branch to run. Finally, we explored a content-aware

scheduler SMARTADAPT, an Oracle one, and then a prac-

tical one, which uses various light-weight feature extrac-

tors, to adapt to the content at runtime. We demonstrated

that our method, notwithstanding its simplicity, can adapt

to a wide range of latency requirements (range of 40X),

on a mobile GPU device, NVIDIA Jetson TX2. SMAR-

TADAPT, integrated with Faster R-CNN as the MBODF,

leads the Pareto optimal accuracy-vs-latency frontier over

7 baselines. SMARTADAPT outperforms a content-agnostic

MBODF baseline, FastAdapt, by 20.9%–23.6% mAP. Our

work can benefit from ongoing work on better video fea-

ture extractors (to be used in our content-aware scheduler),

improved video object detection and tracking models, and

better post-processing algorithms.
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