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ABSTRACT

Adaptive and efficient computer vision systems have been proposed

to make computer vision tasks, e.g., object classification and object

detection, optimized for embedded boards or mobile devices. These

studies focus on optimizing the model (deep network) or system

itself, by designing an efficient network architecture or adapting

the network architecture at runtime using approximation knobs,

such as image size, type of object tracker, head of the object detector

(e.g., lighter-weight heads such as one-shot object detectors like

YOLO over two-shot object detectors like FRCNN). In this work,

we benchmark different video object detection protocols, including

FastAdapt, with respect to accuracy, latency, and energy consump-

tion on three different embedded boards that represent the leading

edge mobile GPUs. Our set of protocols consists of Faster R-CNN,

YOLOv3, SELSA, MEGA, and REPP. Further, we characterize their

performance under different levels of resource contention, specifi-

cally GPU contention, as would arise due to co-located applications

on these boards, contending with the video object detection task.

Our key insights are that object detectors have to be coupled with

trackers to keep upwith the latency requirements (e.g., 30 fps). With

this, FastAdapt achieves up to 76 fps on the most well-resourced

NVIDIA Jetson-class board—the NVIDIA AGXXavier. Second, adap-

tive protocols like FastAdapt, FRCNN, and YOLO (specifically our

adaptive variants, FRCNN+ and YOLO+) work well under resource

constraints. Among the latest video object detection heads, SELSA

achieves the highest accuracy but at a latency of over 2 sec per

frame. Our energy consumption experiments bring out that Fas-

tAdapt, adaptive FRCNN, and adaptive YOLO are best-in-class,

relative to the non-adaptive protocols SELSA, MEGA, and REPP.
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1 INTRODUCTION

Video analytic systems have seen widespread success in various

domains, ranging from computationally heavy tasks such as recog-

nizing faces for surveillance, to mobile applications such as detect-

ing objects for mobile-based augmented reality (AR) to real-time

systems, e.g., localizing pedestrians and cars for autonomous driv-

ing. A key component shared by these applications is the ability

to detect objects in videos. There is ongoing research on pushing

the accuracy further for video object detection tasks. Some of the

recent breakthroughs involve frame aggregation, a technique that

utilizes features from other frames during inference to enhance the

detection results. SELSA [20] widens the window for selecting the

frames for aggregation by expanding the semantic neighborhood

of the frames from their immediate neighborhood. MEGA [1] ex-

tends SELSA further and adds global frame aggregation considering

frames from other videos, sharing semantic similarity. While these

techniques are performed during the runtime of the inference task,

REPP [17] reuses the detection output from a baseline model to

further post-process the detection output to enhance the detection

results after the analysis of a video. Other works make use of op-

tical flow [24], or techniques such as knowledge distillation [4]

that have not been commonly deployed in video object detection.

https://doi.org/10.1145/3469116.3470010
https://doi.org/10.1145/3469116.3470010
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These tasks are mostly geared toward accuracy, leveraging server-

class machines or cloud enterprises. In contrast, mobile applications

typically encounter limited energy or constrained computational

resources while still requiring strict latency guarantees. To improve

the user’s immersive experience (e.g., in AR/VR games) or to give

high-confidence outputs from streaming videos (e.g., for pedestrian

recognition in autonomous driving), such tasks must be performed

in near real-time under stringent latency budgets of 33 msec or

lower. Even with advancements in mobile GPUs, these devices lack

the computation power and resource isolation that a server-class

machine/cloud enterprise provides. In response, following are some

proposed innovations: applying reinforcement learning based neu-

ral architecture search (NAS) for a lightweight network (e.g., [19]),

more efficient computation of the network [6], database’s parame-

ter tuning/cloud VM selection/serverless optimization [10–12], or

using a dynamic pipeline adapting to content at runtime [5, 21, 22].

However, to our knowledge, no prior work has benchmarked

state-of-the-art (SOTA) video object detection works, under varying

resource contention on heterogeneous devices. Further, no prior

work has benchmarked these solutions on embedded devices for

energy measurement, using different power budgets. Thus, in this

paper, we claim the following contributions: We engineered Fas-

tAdapt—a faster variant of ApproxDet [22]—by optimizing the

frame decoding and resizing modules, plus a better choice of li-

brary APIs. We also implemented FRCNN+ and YOLO+, which

are engineered versions of FRCNN and YOLO, with image resizing

as the adaptive approximation knob and with the addition of an

object tracker (MedianFlow) for faster video object detection with

lower jitter, as in our framework FastAdapt
1
. We benchmark the

SOTA models in video object detection on different mobile devices

and benchmark under different GPU resource contention levels, or

different power modes to investigate the impact of contention or

power on video object detection solutions.

2 RELATEDWORK

As a key problem in computer vision, video object detection seeks

to locate object instances in video frames using bounding boxes and

simultaneously classifying the instance into target categories with

their class probabilities. The most widely used detection models

adopt convolutional neural networks (CNNs), broken down into: a

backbone network that extracts features from images (e.g., ResNet)

and a detection network/head that classifies object regions based

on the extracted features (e.g., Faster R-CNN, YOLO). The detection

network can be further categorized into two-stage [3, 15, 19] or

single-stage [9, 14, 23]. A general trend in object detection has been

to make deeper and more complex object detection networks in

order to achieve higher accuracy such as in recent video object

detection algorithms [1, 17, 20]. However, these advancements in

accuracy do not make these algorithms more efficient in terms of

the network size and the latency of the detection task. Further,

in many real-world object detection tasks, the task has to be car-

ried out in real-time on a computationally constrained platform

1
We experimentally determine that it is crucial to couple a tracking algorithm with

the detection algorithm for the streaming analytics to keep up with the streaming

video rate. In this setup, for a Group of Frames (GoF), object detection runs on one

frame and the tracker on the remaining frames. A typical range for the size of GoF for

FastAdapt is 1–100 frames, where 1 means detection only.

such as a mobile or embedded device
2
. In such cases, object detec-

tion, and more specifically in FastAdapt, video object detection

becomes challenging because of the resource constraints and the

often stringent latency budget (30–50 msec/frame) for acceptable

video quality.

3 FASTADAPT’S DESIGN VIS-À-VIS

BENCHMARK DESIGN

FastAdapt comes with a total of five different tuning knobs that

could be adaptively selected at runtime to match the latency Service

Level Objectives (SLOs). The tuning knobs are as follows, 1) image

shape of the object detector, 2) number of region proposals, 3)

interval of the object detector being triggered (sampling interval),

4) tracker type, and 5) image downsampling ratio in the object

tracker. FastAdapt is an engineered version of ApproxNet [21] and

ApproxDet [22], which focus on video object classification and

video object detection, respectively.

FRCNN+ comes with tuning knobs of the image shape and num-

ber of region proposals and YOLO+ comes with the tuning knob of

image shape. Both of them are combined with a tracker with a sam-

pling interval of 8, which was empirically determined as optimal,

meaning the object detector will be triggered every 8 video frames,

and the other frames will be handled with an object tracker.

Our concept of using tuning knobs comes with the trade-off

between accuracy and latency, which results in accuracy degrada-

tion for faster inference under low resource budget. The biggest

difference between FastAdapt and the simple tunable models is

that FastAdapt is able to schedule the tuning knob policy with

more options, especially the sampling interval that controls how

often the tracker will be triggered. The tracker primarily leverages

the CPU rather than the GPU, unlike the detector, and suffers rela-

tively low accuracy loss for most cases where the tracking of the

object is not lost. Plus, use of tracking in video object detection is a

video stabilization technique, rendering the overall video viewing

experience more jitter-free. This gives FastAdapt the ability to

match the latency requirement more flexibly while maintaining

similar accuracy with simple tunable models.

Next, we introduce object detection methods benchmarked, our

evaluation metric, dataset, and embedded devices, and our con-

tention generator to create controlled levels of GPU contention.

3.1 Selected Video Object Detection Models

We benchmark 6 SOTA adaptive models for video object detection,

a total of 10 protocols (including variants of the same model), se-

lected using the following criteria: 1) The code and model could be

deployed on an Jetson TX2 board. 2) The model is opensourced with

pretrained weights on the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) 2015 VID dataset [16] available. These models

can be divided into two groups.

Adaptive video object detection models: We evaluate 3 adap-

tive video object detection models. FastAdapt, a sped-up variant of

ApproxDet [22], sped up with optimization in frame decoding and

image resizing and improved library APIs to represent a state-of-

the-art adaptive protocol. FRCNN+ and YOLO+ in our improvement

over FRCNN [15] and YOLO [13, 14]. FastAdapt: FastAdapt has

2
We use the terms “mobile device” and “embedded device" synonymously.
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Figure 1: Pareto frontier for the accuracy-latency tradeoff

for a particular model, tuning its configuration knobs. This

has to be considered separately for each contention level.

five tuning knobs: Image shape; Number of region proposals; Inter-

val of the object detector being triggered; Tracker type; & Image

downsampling ratio. FRCNN+: We added two tuning knobs for

FRCNN: 1) Image shape, and 2) Number of proposals. Medianflow

tracker [7] was employed for acceleration. With different combi-

nations of the image shape and number of proposals, there are 28

branches with the shape in the following range [224, 320, 448, 576]

and number of proposals in the following range [1, 3, 5, 10, 20, 50,

100]. We used the MedianFlow tracker to speed up while keeping

a sampling interval of 8 frames for the object detector. YOLO+:

We included one tuning knob for YOLO, which is the shape of the

input image, and also used it in tandem with the MedianFlow object

tracker [7] for acceleration. There are a total of 12 branches with

the shape in the following range [224, 256, 288, 320, 352, 384, 416,

448, 480, 512, 544, 576]. Similarly, object detection was triggered

every 8 frames—the sampling interval knob in FastAdapt.

SOTA video object detection models: We also consider several

latest video detection models. REPP comes with a total of three

model (baseline) variants - YOLOv3, SELSA, FGFA - and only their

implementation of the YOLOv3 baseline was able to run on a TX2

board. We address the baseline model as YOLOv3 to avoid confu-

sion with our own YOLO implementations (PyTorch YOLO and

YOLO+), and the full model with the post-processing technique as

REPP+YOLOv3. MEGA is provided with two different backbone

models with different levels of features usage. Here, we use the

BASE model provided by the authors with ResNet-50 as the feature

extractor, as this was the only configuration that could be run on

the TX2 board. We call this model MEGA base. For SELSA, we

utilize ResNet-50 and ResNet-101, with the corresponding variants

referred to as SELSA 50 and SELSA 101.

3.2 Evaluation Metrics and Dataset

Accuracy of all models is measured with mean average precision

(mAP), following the widely adapted protocol [8] on the dataset.

Latency of all models are measured as per-frame latency during

inference, further averaged to acquire the mean latency per frame.

Each model can achieve a variety of accuracy-vs-latency points

corresponding to different settings of the configuration parameters,

specific to each protocol. Generally, for a usable range for each

protocol, a setting that improves the accuracy leads to increased

latency. This tradeoff space defines a set of Pareto optimal frontiers,

as shown in Fig. 1, representing the accuracy and latency achieved

by all the configuration knobs for a given protocol.

Energy consumption is measured by using the API from NVIDIA

- tegrastats. Tegrastats provides the information of current power

(a) Xavier NX (b) AGX Xavier

Figure 2: Calibration of the GPU contention generator. The

CGworkload is increased by a fixed factor 1.1, until the GPU

utilization reaches 100%. The CG workload at desired GPU

utilization levels are used to create the contention.

usage for each module — whether CPU or GPU. User can also

specify the interval of the output from tegrastats. We use 1-sec

interval in our experiments. This choice balances the need to collect

accurate measurements at a fine time granularity while bounding

the overhead of the measurement and corresponding impact on the

performance of the main application.

Dataset: We use the ILSVRC 2015 VID validation dataset [16] as

the benchmark dataset for the video object detection task to classify

and localize the objects in 30 classes, and over 555 videos.

3.3 Embedded Devices

We selected embedded devices in the Jetson class with mobile GPUs

leveraging different CPU, GPU, andmemory capacities, specifically—

Jetson TX2, Jetson Xavier NX, and Jetson AGX Xavier—for our

benchmarking. The relation between their computational capaci-

ties is Jetson TX2 < Jetson Xavier NX < Jetson AGX Xavier. Each

GPU and CPU on these devices come with a native Dynamic Volt-

age and Frequency Scaling (DVFS) functionality, enabled by default,

which we disable in our experiments. DVFS provides a way to re-

duce (static and dynamic) power consumption of the embedded

chips on the fly by scaling down the voltage and frequency based

on the targeted performance of the application. We disable DVFS

by fixing the frequency of the modules at their max frequencies.

We realized this through our detailed empirical investigations and

found our step to be essential for reproducibility.

3.4 Contention Generator

We benchmark object detection models for the contention experi-

ments using a synthetic contention generator (CG) that we created.

The CG simulates the processes that consumeGPU resources, which

could co-exist with the object detection tasks. The CG occupies

designated levels of resource on the GPU module by a percentage

of the maximum capacity. Each embedded device has a different

GPU architecture, and thus, different amounts of resources and

computational ability. Our GPU CG performs add operation on a

certain size of arrays by employing a CUDA kernel function. By

changing the workload size (number of threads) of the CG, we

control the number of GPU cores that are kept busy in unit interval.

For the observation of our calibration experiment, we use tegrastats
to record the GPU utilization. We calibrate the CG for each device

so that 99% GPU utilization at max frequency was achieved and

all contention values less than that use a proportionately lesser
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percentage of workloads. We show the offline profiling experiment

results of the GPU CG on Xavier NX and AGX Xavier in Fig. 2. As

can be seen, with the increasing number of threads in the CG, the

GPU utilization keeps increasing and finally saturates at 99% when

the workload is large enough. After the offline profiling experiment,

we choose 12 discrete levels [0%, 1%, 10%, 20%, 30%, 40%, 50%, 60%,

70%, 80%, 90%, 99%] to serve as the CG’s calibrated output, and ac-

cordingly, map to 12 internal parameters that correspond to the size

of the workloads in the CG. Further, CPU and I/O contention could

be a relevant criterion with efficient models such as MobileNets,

e.g., [18] or GhostNet [6] that utilize depthwise separable convo-

lution operations that are more CPU friendly. Our current models

are GPU-heavy ones since they have heavier backbones.

4 IMPLEMENTATION AND EVALUATION

4.1 Accuracy and Latency Benchmark

Experiment setup: We evaluate each object detection model on

our 3 embedded devices under [0, 20, 50, 90]% GPU contention on

the ILSVRC VID 2015 validation set, as is standard practice. For

adaptive video object detection models, we consider a streaming

setting for inference with video frames fed one-by-one, and report

the mean latency per video frame. For other methods, we use batch

processing for inference. Fig. 3, 4, and 5 summarize our main results.

Power modes for our latency-accuracy experiments: TX2: mode 0;

Xavier NX: mode 2; AGX Xavier: mode 0.

4.1.1 Adaptive Video Object Detection Models. Fig. 3 reports the
accuracy and latency of all models with varying contention levels

on the NVIDIA Jetson TX2 board. In subfigure (a), we observe

that FastAdapt has the lead in the accuracy-latency frontier over

FRCNN+ and YOLO+ over a wide range of latency budgets, varying

from 33.3 msec to 200 msec. For FastAdapt, the accuracy goes up

to 49.8% mAP, running at 142.7 msec per frame (roughly 7.0 fps)

and the accuracy drops by 5.6%, running at 37.9 fps. For FRCNN+, it

is able to achieve a similar accuracy to FastAdapt but the accuracy

drops significantly (>15%) as we dial up the speed to 20 fps. On

the other hand, YOLO+, though with lower accuracy given high

latency budget (100 to 200 msec), wins at speed over FRCNN+ since

the accuracy drop is 8% from 150 msec speed to 50 msec speed.

Finally, we also show that latency and accuracy of FRCNN and

YOLOwithout our optimization in the figure, where the latency axis

is in log-scale. For FRCNN and YOLO, the latency is 693 and 1051

msec per frame while the accuracy is 51.1% and 49.5%, respectively.

Based on our empirical experiments, we have used the contention

generator on different devices, while varying the GPU contention

level from 0% to 90% by increasing the contention level in steps of

10%. However this workload is calibrated when there is no other

workload on the GPU. When the contention generator is run with

the object detection model, the contention generator cannot take up

more than 50% GPU, i.e., the OS scheduler throttles it. This suggests

50% GPU contention is already large enough to impact the object

detection model, saturating it at that level.

In subfigures (b), (c), (d), we further measure the performance of

these protocols under GPU contention. Compared to the subfigure

(a), we observe that FastAdaptmaintains the latency with reduced

accuracy and superior to FRCNN+ and YOLO+, validating its claim

of approximation (at runtime) to resource availability. Given a 50%

GPU contention, FastAdapt’s accuracy drop is 7.8% given a 30

fps speed and 1.0% given a 5 fps speed. In contrast, FRCNN+ and

YOLO+ are 1.5X-2X slower with 50% to 90% GPU contention.

For the latency-accuracy experiments on Xavier NX and AGX

Xavier, we set the latency budget as [20ms, 33ms, 50 ms, 100ms],

in most cases FastAdapt is superior at both accuracy and latency

than FRCNN+ and YOLO+. As we can see the results on Xavier NX

from Fig. 4, in subfigure (a), FastAdapt achieves 49.3% of accuracy

with 59.3 msec per frame (16.9 fps), and accuracy drops to 43.9%

running at 35.2 fps. FRCNN+ is comparable to or even better than

FastAdaptwhen the latency budget is sufficient. However, it drops

quickly to 40.9% when the latency budget decrease to 27.8 msec

(36.0 fps). YOLO+ has a accuracy at 44.2% when the latency budget

is 52.2 msec (19.2 fps). We further add GPU contention for the

latency-accuracy experiment, in subfigure (b), the overall latency

of FastAdapt, FRCNN+, and YOLO+ increased as the contention

increase from 0% to 50%. However, FastAdapt can still keep the

fps about 10 fps when there is 50%. Fig. 4 (c) and (d) show that the

models achieve roughly 2 times higher fps on AGX Xavier than on

TX2. FastAdapt can achieve 47.5% of accuracy at 49.8 fps. FRCNN+

can achieve 38.8% accuracy at 57.3 fps and YOLO+ can achieve 40.0%

at 43.1 fps. All 3 groups of experiments suggest that as contention

increased, the accuracy is influenced and will drop accordingly.

4.1.2 SOTAVideoObject DetectionModels. SOTAmodels (YOLOv3,

REPP+YOLOv3, MEGA base, SELSA 50, 101) focus on the accuracy

of video object detection. As we can see from the caption of Fig. 5,

without latency budgets, they achieve higher mAP than adaptive

models, ranging from 51.25% to 81.5%. The accuracy values obtained

in our benchmark differ from those of the original authors, most

significantly for REPP. This we believe is due to two reasons—first,

we use an IoU threshold of 0.6 consistently for all protocols (orig-

inal authors use different thresholds for different protocols—0.5

for REPP) and second, for the REPP evaluation, we use the code’s

“demo" version, rather than the “full" version, which has most pa-

rameter values hard-coded and thus not easy to use. We find from

our evaluation that thesemodels all suffer from poor latency, further

exacerbated under contention, showing up to 2X increased latency

with contention over 50%. This is because of their model sizes and

inability to adapt to contention. Among all models: YOLOv3 has

the lowest latency along with the lowest mAP on all boards in line

with prior works. SELSA 101 achieves the highest mAP but with

the highest latency on all boards. In contrast, REPP+YOLOv3 has a

superior mAP at 74.81% while still maintaining a low latency.

Overall, FastAdapt outperforms other object detection algo-

rithms since it is designed to adapt to different (video) content char-

acteristics and varying resource contention in the embedded device.

However, other models like FRCNN and YOLO cannot instantiate

such dynamic adaptations and thus lead to inferior accuracy-latency

performance. FastAdapt is lighterweight, especially engineered

for mobile GPUs with co-located applications (contention-aware),

and this comes at the expense of accuracy. The other models, e.g.,

REPP and SELSA, specifically perform averaging of computations

across frames of the same video or global averaging across many

videos, with further post-processing, with accuracy being the pri-

mary criterion for the optimization (of performance).
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(a) No contention (b) 20% GPU contention (g20) (c) 50% GPU contention (g50) (d) 90% GPU contention (g90)

Figure 3: Benchmarking the object detection algorithms on NVIDIA Jetson TX2 under varying contention. Datapoints for

FastAdapt are acquired using the adaptive scheduler; FRCNN+, YOLO+ are pareto-style datapoints from experimenting with

multiple fixed configurations; & FRCNN and YOLO has a single datapoint, lacking adaptive features.

(a) Xavier NX, g0 (b) Xavier NX, g50 (c) AGX Xavier, g0 (d) AGX Xavier, g50

Figure 4: Benchmarking the object detection algorithms on the NVIDIA Jetson Xavier NX and AGX Xavier under different

contention levels. The datapoints are acquired with the same procedure as from the NVIDIA Jetson TX2.

(a) Jetson TX2 (b) Jetson Xavier NX (c) Jetson AGX Xavier

Figure 5: Benchmarking SOTA models on NVIDIA Jetsons under varying contention. The accuracy remains invariant across

boards, as follows (in mAP). YOLOv3: 51.25%, REPP+YOLOv3: 74.81%, MEGA base: 68.11%, SELSA 50: 77.31%, SELSA 101: 81.5%.

Table 1: Energy consumption (J) for all protocols under dif-

ferent power modes: We run all models on a randomly se-

lected video dataset (828 frames), then measured the energy

consumption for the whole inference time (Xavier NX).

Power

Modes

Fast
Adapt

FRCNN+ YOLO+ FRCNN YOLO REPP w
YOLOv3

MEGA SELSA
50

SELSA
101

0 2244 2205 2196 6567 14270 3427 5269 12233 14565

2 2293 2296 2246 6745 14407 3490 5368 12519 14967

4 2069 2064 1914 5906 11836 3122 4528 10493 12451

Avg 2202 2189 2119 6406 13504 3346 5055 11748 13995

4.2 Energy Consumption Benchmark

Experiment setup: Embedded devices need to be energy efficient

as in most cases they may need to run on limited power or bat-

teries. Thus, we measure the energy consumption of our video

object detection models—FastAdapt and baselines on our mid-

tier embedded device, Xavier NX using 3 different power modes

[0, 2, 4], out of 5 available ones [2]. Power mode 0 consumes the

highest power (15W), with the highest frequency setting for each

of GPU, CPU, and the DL accelerator. Power mode 4 provides the

lowest power level. Under each power mode, we first measure the

idle status power using tegrastats. Mode [0, 2, 4] have idle status

power of [3.25, 3.38, 3.08]𝑊 . Then, we run each video object detec-

tion model on a randomly selected video dataset, which has 828

frames. At the same time, we record the energy consumption using

tegrastats. The results are shown in Fig. 6 and Table. 1. Since the

major part of power consumption comes from the GPU module,

and FastAdapt, FRCNN+, YOLO+ leverage an object tracker in

our adaptive versions, we notice significant oscillations in their

energy plots [Fig. 6]. This is because the object tracker mainly

uses the CPU corresponding to the dips in the curve. We see that

Mode 4 helps reduce the instantaneous power by around 33% and

total energy consumption by around 10%. Among all models, Fas-

tAdapt, FRCNN+, and YOLO+ have the lowest average total energy

consumption at around 2,200 𝐽 . REPP with YOLOv3 (baseline) con-

sumed 3,346 𝐽 on average while SELSA has the highest average

energy consumption of 13,995 𝐽 , 6X larger than adaptive models.

Thus, our energy benchmarking experiments validate that adaptive
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Figure 6: During the inference stage, on the randomly se-

lected video dataset, the instantaneous power is calculated

every 1-sec interval, using the tegrastats API (Xavier NX).

variants of YOLO and FRCNN, as well as FastAdapt demonstrate

the highest energy efficiency relative to their rigid variants.

The results from the YOLOv3 backbone of REPP and YOLO

suggest that different implementations and frameworks result in

different energy consumption. Also, from the observation of the

SELSA model with different backbones, a deeper backbone (ResNet

101) has a larger energy consumption, validating our intuition that

more layers of computation translate to higher energy consumption.

5 CONCLUSION

In this paper, we benchmark the state-of-the-art video object de-

tection frameworks on the NVIDIA Jetson family of embedded

devices under different GPU contention and power-mode scenar-

ios. We show the latency, accuracy, and power consumption of

FastAdapt compared with other video object detection models

under each scenario. According to our observation, FastAdapt

provides the best Pareto frontier of accuracy-vs-latency for all three

boards and under all contention levels. However, if there are loose

latency bounds, among adaptive models, FRCNN+ (i.e., FRCNN

coupled with a tracker) achieves the highest accuracy while among

non-adaptive models, SELSA outperforms all others. For the most

well-resourced board, the AGX Xavier, and under the most strin-

gent latency requirement, FastAdapt is able to sustain 76 fps in

the no-contention scenario, while on Xavier NX, it is 74 fps, and

on Jetson TX2, it is 38 fps. Among the latest video object detection

models, SELSA achieves the highest mAP (81.5%, with ResNet-101)

but also suffers from a high latency (> 2 seconds per frame). Also

these models, SELSA, MEGA, and REPP, are not adaptive, and there-

fore, suffer in latency when faced with any level of contention. We

also perform energy consumption experiments and find that Fas-

tAdapt, FRCNN+, and YOLO+ achieve the best, and comparable,

energy efficiency, while SELSA has 6X the energy consumption

of these best-in-class protocols. Thus, if one runs the boards at

the lowest power level, it does not always translate to equivalent

energy savings. We hope that this work points to much further

work in understanding the suitability of various object detection

heads on embedded boards. The understanding must encompass

varying levels of resource availability on these devices as well as

varying power levels of operation.
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