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ABSTRACT

With the increase in the number cores in modern architectures,
the need for co-locating multiple workloads has become crucial for
improving the overall compute utilization. However, co-locating
multiple workloads on the same server is often avoided to protect
the performance of the latency sensitive (LS) workloads from the
contentions created by other co-located workloads on the shared
resources, such as cache and memory bandwidth.

In this paper, we present PYTHIA, a co-location manager that
can precisely predict the combined contention on shared resources
when multiple co-located workloads interfere with an LS workload.
PyTHIA uses a simple linear regression model that can be trained
using a small fraction of the large configuration space of all pos-
sible co-locations and can still make highly accurate predictions
for the combined contentions. Based on those predictions, PyTHIA
judiciously schedules incoming workloads so that cluster utiliza-
tion is improved without violating the latency threshold of the LS
workloads. We demonstrate that PyTHIA’s scheduling can improve
cluster utilization by 71% compared to a simple extension of a prior
work when the user is ready to sacrifice up to 5% in the QoS metric
and achieve cluster utilization of 99% if 10% degradation in QoS is
acceptable.
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1 INTRODUCTION

Large datacenters can host up to several thousands of servers and
form the backbone of the compute infrastructure for many large
organizations. These large datacenters often cost billions of dollars
of capital investment [14] for server procurement, site construction,
and operating expenses. Thus, efficient use of all the available
computing resources is of paramount importance for minimizing
the total cost of ownership (TCO) of datacenters [35].

However, surprisingly, industry-wide datacenter utilization is
estimated to be very low [1, 8, 38, 45, 54, 56]. Since, most processors
today are equipped with several cores [2], thus one straight forward
way to increase the utilization could be to run several applications
simultaneously on different cores of the processor where each of
those applications themselves can be multi-core. However typically,
if one of the workloads is of user-facing or latency sensitive (LS)
type, this approach is not taken in order to protect them from
slowing down. Examples of these LS workloads abound, e.g., web
servers, database servers, search, etc. which can often constitute a
significant fraction of all workloads that are consistently run in a
datacenter. The main reason why such a possible slowdown of the
LS workloads is anticipated is because of contentions in the shared
resources created by other co-located workloads', degrading the
quality of service (QoS) metric (e.g., latency).

The other class of workloads in datacenters is often called batch
workloads. These include a broad swath of non-interactive and
non-latency sensitive jobs that perform offline data consolidation,
processing, analytics, model training, simulation, batch processing,
search index creation, backup/restore and many other maintenance
tasks. Even though these tasks are expected to complete within a
certain broad time range, they are immune to modest variations in

!In the context of this paper, the term co-location implies two or more workloads
concurrently running on different cores on the same server.
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Figure 1: Distribution of response times of an LS workload running on (a) Ama-
zon’s EC2 (b) private cloud. The workload has a tail time of 55X (EC2) or 4X
(private) of the median due to interference.

their completion time. For example, it is acceptable if a task that
performs nightly computation of personalized recommendations,
completes in less than 6 hours so that the recommendations can be
served next morning. Data Center Infrastructure Management that
provides a complete inventory of all assets in the datacenter, also
mentions such loose deadlines in the order of a day or more [15].

Sources of interference:

Even though each server in a datacenter has several cores [42,
53]), an LS workload can suffer from performance interference
if there are other workloads running concurrently on the same
server. This happens due to subtle sharing and interference relation-
ships through various shared resources, such as Last-Level-Cache
(LLC), memory, and memory bandwidth. For example, LLC, which
is shared across cores in the same chip, is a major source of interfer-
ence as shown by numerous studies [20, 44, 49, 56]. Often workloads
put higher pressure on the memory bandwidth either when they
are under high load or when working with large datasets because
the working-set size does not fit in on-chip caches. Running appli-
cations on two separate sockets does not solve the problem entirely
as many workloads have memory access patterns that are random
and that span across sockets in a NUMA architecture [33, 58]. Thus,
to improve the utilization of the entire cluster, utilization per socket
must also be increased through higher degree of co-location.

Interference or contention through shared resources also affects
the application performance in VM-based cloud systems. As shown
in Fig. 1, it can be observed that even when applications run in
their own VMs in one of the most advanced cloud infrastructures,
Amazon EC2, interference can cause the response time of an LS
workload (a social network benchmark from CloudSuite [22]) to
shoot up 55X from its median value. In a private cloud environment,
the same LS workload suffered a 4X slowdown in the response time.
Static vs. dynamic scheduling: To improve the utilization in dat-
acenters, prior research proposed many techniques to intelligently
schedule workloads based on predictions about which combina-
tions of workloads can be safely co-located [17, 38, 56, 60]. These
previous works can be broadly categorized into static and dynamic
approaches. In the static approach [38, 60], performance of the
workloads are predicted using various models built offline and the
scheduling decision is made based on the static profile. On the
other hand, in the dynamic approach [17, 34, 56], the performance
of the workloads is profiled online and then scheduling decision
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Figure 2: Dynamic bubble to detect the sensitivity characterization severely
hurts the performance of the latency sensitive workload (MongoDB).

is made according to the up-to-date profile. Dynamic techniques
can adapt to unpredictable workload variations, but they incur
online overhead. For example, when we experimented with Bubble-
Flux [56] we found its dynamic bubble mechanism that profiles the
sensitivity characteristics of the LS workload online, causes severe
performance degradation in the LS workload. Fig. 2 shows that
QoS of MongoDB?, a LS application, drops by 44% and 35% when
the dynamic bubble runs, respectively under low and high load
on a MongoDB server. According to the approach in Bubble-Flux,
such perturbation will occur on every candidate server, whenever
a batch workload enters the system and needs to be scheduled.
Hence, we posit that static techniques provide a safer and affordable
choice for many scenarios while dynamic ones can be deployed to
handle unforeseen situations (such as a new workload). Our solution
improves the co-location decision at the time of scheduling using
precise and lightweight online characterization of the applications.
Dynamic Monitoring and Control: In the dynamic monitoring
and control schemes, after a batch workload is scheduled on a server
to execute, its performance is actively monitored. If an LS workload
is found to be affected by a co-located batch workload, the batch
workload may need to be moved to a different server, which can
be very costly due to factors like data locality. Hence, throttling of
the batch workloads was proposed as a solution by prior works [40,
47, 56], in which the application is forcibly scheduled out for an
algorithmically determined period. However, frequent throttling
may cause a batch workload to miss even its loose deadline. An
accurate workload placement or scheduling approach can not only
reduce (or even eliminate) the frequency of such throttling, but also
reduce the need for frequent monitoring leading to lower overhead
for the runtime.
Profiling burden: The profiling burden (either offline or online)
can be high since we are dealing with pairwise (or in our work n-
way) co-location and hence pairwise interference characterization.
Thus, if there are M batch applications and N LS applications, a full
profiling will involve O(M X N) measurements. Therefore, to reduce
the profiling burden, some prior works [17, 38, 56, 60] use one, or
a few, generic applications as a stand-in for the LS application.
We find empirically that this simplification is error-prone. The
contention that a particular batch application causes on two LS
applications can be quite different as we show in Fig. 4. This is
orthogonal to the fact that different LS applications have different

2We report Quality of Service (QoS) in terms of the number of instructions per cycle
(IPC) [28, 29, 48]. Thus, the lower the IPC, the lower the QoS.
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sensitivities to a given amount of contention (which prior works
do take into account).

Beyond pairwise co-location: One fundamental limitation of all
prior work [17, 18, 38, 56, 57, 60] is that they cannot precisely
predict the performance impact on the LS workload from multi-
ple co-located batch workloads. Previous approaches [17, 18, 60]
extended from pairwise co-location decisions (one LS workload
and one batch workload) to multi-way co-location decisions (one
LS workload and multiple batch workloads) by simply summing
the contention caused by each batch workload or stay silent on
this topic altogether. We define the term “degree of co-location” as
the number of batch applications that are concurrently executing
on one server with the LS workload. Thus, one LS and one batch
application executing concurrently will denote a degree of 1. In
Table 1 we show how much the observed contention of multiple
co-located batch applications differs from the contention predicted
by a simple additive model. The simple additive approach always
overestimates the contention (by 16-76%) and the overestimation
becomes worse with increasing degree of co-location (Figure 6).
Thus, all prior works with such additive model will under-utilize
a cluster by ignoring feasible multi-way co-location choices. Typi-
cally a datacenter runs a large variety of batch applications, which
for a reasonably sized datacenter can be of the order of 1000s [17].
Therefore, it is not practical to develop a model for the contention
caused by each possible combination (1 through n-way co-location)
of these batch applications due to the combinatorial explosion.
Our solution approach: PyTHia

In this paper, we present the design and implementation of
PyTHIA®, a co-location manager that provides precise estimates
of combined contention created by multiple co-located batch work-
loads. It uses such prediction to find efficient co-location opportu-
nities in the entire cluster, thus significantly improving the cluster
utilization. For predicting contention from multiple co-located batch
workloads, we empirically demonstrate that a weighted linear re-
gression model works well for a wide class of batch workloads and
performs far better than a simple additive model. We further show
that to learn the parameters of this model, PyTHIA samples only
a small fraction (less than 5%) of the large training space to avoid
the high training burden. As PyTHIA can provide very accurate
predictions for the contention induced by multiple co-located batch
workloads (Section 5.7), it can be used for initial placement of work-
loads reducing the likelihood of contention (Section 5.4). PyTHIA
incorporates dynamic monitoring and control schemes, which will
be needed, hopefully infrequently, to deal with unexpected changes
in application behavior. For specificity, we integrate with Bubble-
Flux‘s PiPo mechanism [56] to control the execution intensity of
the batch workloads.

One shortcoming of PYTHIA relative to some prior works, such
as Paragon, is that it is ideally suited for recurring workloads. Thus,
PyTHIA has had occasion to perform offline modeling with these
workloads, though the load profiles of the workloads can be differ-
ent. If indeed an unseen workload is encountered, then PyTHIA has
to perform the expensive profiling and modeling operations in the
critical path before this workload can be scheduled. This may be

3PyTHIA was a priestess of the Temple of Apollo at Delphi and was known for her
accurate prophecies.

Middleware ’18, December 10-14, 2018, Rennes, France

an acceptable drawback in practice because data centers see the
majority of their workloads as recurring [7, 23].
In summary, our paper makes the following contributions:

(1) We build a contention prediction model for the scenario of multi-
ple co-located workloads. We show that for concurrently running
workloads, our prediction model is better than that of prior so-
lutions, which results in over-estimation of the contention and
thus misses out on feasible co-locations.

(2) We characterize the contention caused by a batch workload more
accurately by leveraging the insight that the contention is specific
to the latency sensitive workload. Hence, the simplification for
profiling purposes of measuring contention with an abstract,
generic stand-in for the latency sensitive workload is inaccurate.

(3) We present the design and implementation of PYTHIA- a co-
location manager that can precisely predict the contention in-
duced by multiple co-located batch workloads running with a
latency sensitive workload. PyTHIA imposes almost negligible
online performance overhead and can train models very fast
due to its simplicity. Our evaluations show that for a reasonable
QoS policy, PYTHIA can increase server core utilization by 71%
compared to an extension of prior work, on a 500 server cluster.

(4) PyTHIA is able to react to dynamic changes in the application’s
profile, say due to a change in load or application phase, and
still support the co-location decision without degrading the LS
workload’s QoS below the user-specified threshold.

2 BACKGROUND

In this section, we will discuss at a high level the state-of-the-art
approaches to characterize the contention between workloads and
how to determine co-location of workloads. We categorize the ex-
isting approaches according to how they characterize the different
workloads (LS workloads and batch workloads)—whether offline
or online. What steps are executed when co-location decisions are
made also varies depending on the above dimension.

2.1 Offline Profiling for all Workloads

Pairwise sensitivity characterization measures the interference
of each batch workload on each LS workload in terms of how much
the QoS metric degrades in the LS workload [34]. This approach first
measures the QoS metric of each LS workload when it is running
alone. Then, it measures how much the QoS metric of each LS
workload reduces after co-locating with each batch workload. This
offline, pairwise profiling approach needs (M x N) measurements,
where M is the count of batch workloads and N is the count of LS
workloads. Finally, a lookup table is used for estimating the impact
to an LS workload given any batch workload.

Microbenchmark based contention characterization quan-
tifies the interference from any batch workload by using some
microbenchmark (or microbenchmarks) as stand-in for the batch
application. The effect of the microbenchmark on the LS workload
is then studied. Examples of such microbenchmarks are the bubble
application in Bubble-Up [38] and Bubble-Flux [56], Ruler applica-
tion in SMiTe [60], and several microbenchmarks in Paragon [17].

To give specificity (and because we build on this technique,
among others), we describe the bubble microbenchmark in Bubble-
Up as a representative example. A bubble application can generate
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Figure 3: Basic principle behind predicting QoS in pairwise co-location.

a series of discrete levels of memory contentions to profile LS work-
loads. We call the level of memory contention “contention score”,
with typical unit of MB, representing the memory and last level
cache usage by a bubble application. By concurrently running the
LS workload along with the bubble application, the QoS metric of
the LS workload progressively degrades as the memory contention
due to the bubble application increases as shown in Fig. 3(a). This
curve is called the “sensitivity curve” and there is one for each LS
workload. This step involves B X N measurements, where B is the
number of discrete memory pressure levels in the microbenchmark.

In the next step, various batch workloads are run individually
with each LS workload and the drop in performance of the LS work-
load is measured. Then, by referring to the sensitivity curve of the
LS workload, the “contention score” for each batch workload is de-
rived. This process is shown in Fig. 3(a) and this step involves MxX N
pairwise measurements. When making a scheduling decision about
which batch workload w to co-locate with an LS workload i, the
contention score of w toward i is looked up and if that contention
score in i’s sensitivity curve will not cause a degradation in the QoS
below the threshold then w and i can be co-located.
Reducing burden of pairwise co-location profiling

To reduce the amount of pairwise contention measurements,
which is M X N, Bubble-Up calibrates a reporter application as the
stand-in for any LS workload. Bubble-Up concurrently runs the
reporter application along with various batch workloads (one at a
time) and measures the drop in performance of the reporter appli-
cation. By referring to Fig. 3(b), the corresponding contention score
of the batch workload is calculated (follow direction of arrows).
This approach reduces the burden of offline profiling from M X N to
only M. The two other steps—calculation of the sensitivity curve for
each LS workload and determining if co-location is feasible or not at
the time of scheduling—stay the same. This approach significantly
reduces the number of measurements to characterize contention
from M XN +BXN to M+BxXxN.However, it is challenging to come
up with a single reporter as a stand-in for any LS workload and
we show empirically that this simplification is inaccurate (Sec. 3.1,
Fig. 4).

R. Xu et al.

2.2 Online Profiling for LS Workloads

Bubble-Flux [56] argues that due to phase, load, and input changes
of an LS workload, the sensitivity curve of the workload may change
significantly during runtime. So, it uses a dynamic bubble to perturb
the LS workload running on each server and determines the sensi-
tivity curve at runtime. Instead of the B X N measurements offline,
it takes B measurements on each of the S available servers when-
ever it needs to schedule an incoming batch workload. The offline
contention characterization of batch workloads and determining
co-location decisions stay the same as in the earlier approach. The
biggest challenge of this approach is that determining the sensitivity
curve online, prior to scheduling, is heavyweight and is potentially
disruptive to the executing applications.

2.3 Online Profiling for all Workloads

Paragon [17] proposes a completely online solution to profile the
interference of workloads and does not differentiate between LS
and batch workloads. It considers two components—how sensitive
a workload is to the interference from other workloads and the
interference the workload itself generates. By co-locating a work-
load and a microbenchmark with steadily increasing contention
scores, it determines how sensitive the workload is. Correspond-
ingly, the interference that the workload generates is determined
when the QoS of the microbenchmark is reduced below a certain
threshold. However, instead of profiling each incoming application
in detail, it leverages information the system already has about
applications it has previously seen. It uses collaborative filtering
techniques to quickly and accurately classify an unknown, incom-
ing workload with respect to heterogeneity and interference in
multiple shared resources, by identifying similarities to previously
scheduled applications. The classification allows Paragon to greed-
ily schedule applications, even unknown applications, in a manner
that maximizes server utilization.

2.4 Interference due to Multiple Concurrent
Batch Workloads

Processors of today have several tens of on-chip cores [2] and
to improve compute utilization of a cluster all these cores must
be kept occupied by applications. Since typically multi-threaded
applications do not employ as many number of threads as there are
cores in a processor, in a majority of cases multiple applications
need to run on the different cores of the same processor. This
motivates the need to run multiple co-located batch workloads
with a single LS workload on a server.

In Bubble-Up, Bubble-Flux, SMiTe, and Quasar [18], the authors
are silent about how they characterize the contention due to multi-
ple batch workloads either at the time of scheduling or later during
runtime. Elfen Scheduling [57] works only for 2-way simultaneous
multithreading (SMT), where LS workload counts for one and the
other batch workload counts for the second. One naive baseline
would be to use brute force and measure the contentions by all possi-
ble co-locations of the batch workloads. Suppose there are M batch
workloads and maximum allowed degree of co-location is K. Then,
this brute force approach would require running @(MX) possible
configurations. For reasonable values of M = 20 and K = 5 that are
typical in a datacenter (M in datacenters can be much higher too
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(a) Sensitivity curve of Latency Sensitive workload Redis and con-
tention caused by three different batch workloads Blackscholes,
Bodytrack, and Canneal from PARSEC benchmark (respectively, w1,
w2, and w3).
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(b) Sensitivity curve of Latency Sensitive workload MongoDB and con-
tention caused by three different batch workloads to MongoDB.

Figure 4: Sensitivity characterization of two different LS workloads and con-
tention caused by three batch workloads to each LS workload. The contention
caused is different for the two LS workloads, thus disproving the prior approach
of using a single stand-in benchmark for any LS workload for the purpose of
contention characterization.

of the order of 1,000 [17]), this leads to an infeasible space of 3.2M
configurations. Paragon [17] uses the sum of interferences of each
individual existing workload on the server to represent the total
interference on the incoming workload. Following this strategy, we
create a baseline for comparative evaluation called MULTI-BUBBLE-
Up that estimates the contention score for each batch workload
using the bubble mechanism explained above and then sums up the
contention scores for determining the net contention due to mul-
tiple co-located workloads. We see empirically that this is highly
inaccurate and we shed light on the reason for this in Sec. 3.2.

3 SOLUTION APPROACH

We first describe the two fundamental shortcomings of all prior
works that hamper their ability to co-locate multiple applications.
Then we present the solution mechanisms in PyTHIA and end the
section with an end-to-end workflow of PyTHIA.

3.1 Contention Effect is LS-specific

Many prior works [56, 60] use a single generic application as a
stand-in for any LS workload to characterize the contention any LS
workload will face from a batch workload. This is done to reduce
the burden of profiling—from M X N to just M. We examine if
it is accurate to make this simplification. We first consider the
interference model individually of two different LS workloads, Redis
(a key-value store) and MongoDB (a NoSQL database server). In
Fig. 4(a), we measure how much contention is caused to Redis due
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Figure 5: Co-located batch workload induce different levels of contention when
run with different latency sensitive workloads (e.g., Redis vs MongoDB).

to the three batch workloads, Blackscholes, Bodytrack and Canneal
from the PARSEC benchmark suite [11]. As can be seen in the
figure, the contention due to the three batch workloads correspond
to 0.7 MB, 8.5MB, and 13MB and they cause 1%, 3%, and 5% QoS
degradation respectively.

The sensitivity curve for the second LS workload, MongoDB,
looks distinctly different (Fig. 4(b)). The contentions due to the three
batch workloads are also different, 7MB, 10MB, and 10.5MB, respec-
tively. From this evidence, it appears that one does have to consider
each LS workload to understand the effect of contention due to
batch workloads, rather than use a single stand-in microbenchmark.

In Fig. 5, we further investigate the difference of memory con-
tention on Redis and MongoDB from 1, 2, and 3 co-located batch
workloads. On the X-axis we plot the combined contention created
by various co-located batch workloads, drawn from a set of 19 differ-
ent applications from PARSEC and SPEC benchmark suites, running
alongside the LS workload Redis. On the Y-axis we plot the same
for MongoDB. If the same set of batch workloads always induces
the same contention onto Redis and MongoDB, i.e., the contention
is independent of the LS workload, then all the points should fall
on the black diagonal line. However, for these two LS workloads,
the points are mostly scattered toward the upper half, indicating
that batch applications create higher contention for MongoDB than
for Redis. Thus, accurate prediction of combined contention for mul-
tiple co-located batch workloads must take into account the specific
LS workload that is being considered. This observation however in-
creases the complexity of the characterization that PyTHIA has to
perform (Section 3.3).

3.2 Extend Existing Models to Predict
Multi-way Co-location?

As we have discussed in the previous section, it is desirable to in-
crease the degree of co-location due to increasing core counts on
servers. However, prior works are either silent on how they estimate
the contention score for multiple batch workload combinations dur-
ing scheduling [38, 56, 60] or simply choose an additive model [17]
(see detailed discussion in Section 2.4). To quantitatively see how
the extension may work, we first attempt to directly sum up the
contention of each batch workload when singly running with the
LS workload and call it MuLTI-BUBBLE-UP, which is our extension
of Bubble-Up using the additive model used by Paragon. MuLTI-
BusBLE-UP profiles the contention score of each batch workload
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Table 1: Examples of inaccurate estimates of contention score for 8
combinations of batch workloads. Prefixes Parsec and Spec indicate
the corresponding benchmark suit.

Batch workloads Observed Con- | Estimated Con- | Error
tention (KB) tention (KB)
SpecBwaves, SpecBzip 11694 14268 22%
ParsecStreamcluster, SpecBwaves, SpecZeusmp | 12270 21630 76%
SpecTonto, SpecGee 9704 14060 44%
ParsecFerret, SpecOmnetpp 5404 6596 22%
SpecBwaves, SpecH264, SpecOmnetpp 12533 17385 38%
SpecGromacs, SpecHmmer, SpecXalancbmk 7044 8226 16%
SpecMILS, SpecBzip, SpecBzip 9127 11540 26%
ParsecBodytrack, ParsecCanneal, SpecMcf 8403 12895 53%
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Figure 6: The distribution of prediction error from a direct application of prior
work [38], for all combinations of 2, 3, and 4 batch workloads. We observe a
mean prediction error of 26% for the 2 batch workload combinations, 45% for
the 3 batch workload combinations, and 66% for the 4 batch workload combi-
nations.

with each LS workload offline using the bubble microbenchmark ex-
plained in Sec. 2.1. MULTI-BUBBLE-UP then estimates the contention
score of multiple co-located batch workloads by summing up the
contention score of each individual application in the online phase.
To create the ground truth for the actual contention, we regard the
co-located batch workloads as a group and actually measure the
contention score of this group (using the same bubble approach).
Our empirical finding is that this is rather inaccurate for predict-
ing the contention created by multiple co-located batch workloads.
For some randomly sampled combinations of multiple co-located
batch workloads, Table 1 shows the actual observed contention ver-
sus the estimations predicted by MurTI-BUBBLE-UP. It can be seen
that the predictions for the contention by MuLTI-BuBBLE-UP are
overestimates by 16% to 76%. This leads to unnecessarily conserva-
tive choices about which batch workloads to co-locate with the LS
workload, resulting in low utilization in the datacenter. Moreover,
as we see in Fig. 6, the prediction error for the MuLTI-BUBBLE-UP
model increases as we increase the number of co-scheduled batch
workloads, a concern considering the desire for increased degree
of co-location.
Source of Error in the Naive Model: We investigate the source
of the estimation error in the prior work and identify that the
mutual interference between the co-located batch workloads is the
root cause. At a high level, mutual interference between batch
workloads throttles the batch workloads themselves, reducing their
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IPC and consequently their CPU utilization. This effect further
reduces the combined contention on shared resources induced by
the co-located batch workloads. As the number of concurrently
running batch workloads increases, we expect a greater level of
mutual interference among the batch workloads. Consequently, in
Fig. 6, we see that as the mutual interference increases we see an
increasing over-estimation by the naive sum method.

3.3 Our Model for Multi-way Co-location

To improve the prediction accuracy of combined contention from
multiple co-located workloads, PyTHIA designs a linear regression
model. It first weights the individual contention scores of the batch
workloads to account for the effect of mutual contention and then
does a linear sum. Mathematically, our model has the form:

Bg = Z cw; Bw;
W;eS

where, S is the set of co-located batch workloads, cyy, is the
weight for the batch workload W; and Byy, is the contention in-
duced by that batch workload when singly co-located with the LS
workload. Apparently, MuLTI-BUBBLE-UP assumes all contention
coeffients cyy, to be 1. This model looks deceptively simple, and
it is relative to non-linear models, but it is accurate in predicting
combined contention to the extent that is required for making co-
location decisions (as we demonstrate empirically in Section 5). The
reader should also note that this model is combined with two other
dimensions—the specific LS workload (i.e., the contention score of
a batch workload will be different for different LS workloads) and
the weights depend on the degree of co-location. The second factor
means that when the batch workload W; is co-located with one
LS workload and one other batch workload (co-location degree 2),
then its weight can be represented as c(vf,)_ , while for co-location

- : @, .0
degree 3, it can be different, i.e, Cy. E Cppr-

Interpretation of the weights: The wéights cw; in our model
represent the tendency for the associated batch workload W; to
suffer interference from other batch workloads and therefore, ex-
ert reduced cache and memory pressure as a result of co-location.
Larger weights indicate a resistance to interference, while smaller
weights represent a vulnerability to interference and hence a ten-
dency for that batch workload to exert less memory contention to
the LS workload when competing for resources with other batch
workloads on the same server.
Calculating the weights offline: The weights (cyy,’s) are derived
using linear regression on a training dataset obtained from a small
number of training runs, where each run has a combination of
batch workloads. The regression technique attempts to calculate
the weights so as to minimize the prediction error of the combined
contention. One possible concern is the training cost for the model
because the search space is large and grows as O(MKX) where M
is the count of available batch applications and we are consider-
ing co-locations of up to degree K. In Sec. 5, we experimentally
demonstrate that training runs consisting of less than 5% of the
combination space are enough to predict the combined contention
with high accuracy for any possible co-location combinations.

To train our model offline, the inputs are the single workload con-
tention scores Byy, for batch workloads W;, wherei = 1,2,..., M,
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and the observed contention B; from multiple co-located batch
workloads, where i = 1,2,. ..,k and k is the number of sparsely
sampled data points. The output of this modeling are the weights
cw;’s. We have to solve the equations separately for each degree
of co-location d = 1,2,...,K. Our linear regression model can
be set up formally as follows (for clarity of notation, we omit the
superscript d that should go with ¢; ;, cw;, andB;):

&1Bwy  &,2Bwy &, MBw, \ [ ewy B
&1Bw,  &,2Bw, & MBwy, || ewy B,
&1Bwy  &k2Bwy & MBwy, ) \cwy, By

where ¢;, j represents the number of times that batch workload W;
appears in the i’ h workload combination?, such that Zfil &ij=d.
In practice, most values of &; ; are zero because the number of batch
workloads M is much larger than the degree of co-location.

For nearly all sample sizes k (rows) and number of batch ap-
plications M (columns), this system of linear equations is over-
determined. For example, in the three-way co-location scenario
and with a sample rate of s, the sample size (i.e., number of rows)
is k = sM3. The system is over-determined if

SMP>M=s> -
M?

Asaresult, we typically cannot find an exact solution, and instead
perform least squares optimization to find the set of coefficients cyy,
that minimizes the prediction error on the combined contention
scores B;’s.

As we have discussed here, the weight corresponding to a batch
workload is calculated as distinct for each unique LS workload.
On the other hand, the contention due to a batch workload W;
does not differ significantly as you change the exact set of other
co-located batch workloads, for a given degree of co-location. Thus,
the weights cyy, of batch workload W; does not consider its set of
co-located batch workloads. This helps us avoid a combinatorial ex-
plosion in modeling the contention created by batch workloads. We
experimentally demonstrate this phenomenon in Sec. 5.6 (Fig. 15).

3.4 QoS Metrics

PyYTHIA uses instructions per cycle (IPC) as the QoS metric of the
LS workload. The rationale behind using IPC instead of the intu-
itive latency metric is two folds. First, IPC measurements are more
immune to system noise and hence ideal for building predictive
models. Second, IPC being measured at the server side is not af-
fected by fluctuations in the network conditions. Our use of IPC
is in line with prior works [13, 21, 28, 39, 56, 60], of which [56, 60]
use it specifically as a substitute for latency of LS workloads.

We also empirically validate the negative correlation between
IPC and read latency in multiple LS workloads. A representative
example is shown with MongoDB in Fig. 7. For the allowable QoS
degradation of an LS workload under co-location, we use a QoS
policy which gives what percentage of IPC compared to the no
contention case, the system administrator is willing to tolerate.
The higher this percentage is, the higher is the requirement for

4 Multiple instances of the same batch workload are co-located on different cores.
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Figure 7: Read latency in MongoDB under different IPCs, showing high negative
correlation between the two metrics.

the performance of the LS workloads. We use the commonly used
thresholds of 80%, 90%, 95%, and 99% in our evaluation settings.
Temporal variations in the resource usage of the batch work-
loads may cause QoS violation in the LS workloads and a mean
or median value would ignore such tail behaviors. So, in PYTHIA,
we capture the impact of the batch workload on the tail latency of
the LS workload by using the 95" percentile of the latency (mea-
sured through 5!% percentile of the IPC) as the effective contention
score. By using the 95" percentile of the latency, PyTHIA is more
conservative about preserving the performance of the LS workload.

3.5 Dynamic Adaptation to LS and Batch
Workloads

In our design presentation so far, we have chosen offline profiling
of both LS and batch workloads, to avoid degrading the perfor-
mance of the applications due to online profiling. However, this
basic mechanism cannot deal with scenarios where the contention
characteristic changes drastically at runtime due to phase change
behavior in the application or changes in the input to the appli-
cation. To handle such scenarios, PyTHIA takes the approach of
creating separate profiles for each LS workload corresponding to
the different load conditions and different input classes. For exam-
ple, for MongoDB, we have 3 different load classes, high, medium,
and low, and 3 different input classes, corresponding to read-heavy,
read-write-balanced, and write-heavy, thus giving a total of 9 pro-
files. This leads to a constant multiplicative factor increase in the
number of LS workloads to consider in our modeling, some domain
knowledge about what features to consider for creating the input
classes, and a selection of the number of classes to use. In practice
however, this task is relatively straightforward. The domain knowl-
edge is at a high level and available to anyone who is going to run
the LS workload and cares about its performance. The number of
classes can be determined through a sensitivity study and we find
empirically that 3 is sufficient for both load and input classes—the
sensitivity curves tend to have significant overlap with more than
9 profiles for a given LS workload. At runtime, we inject a single
bubble and look up from the different sensitivity curves, which
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profile of the LS workload to use. Our approach creates less pertur-
bation to the running application than the alternative approach of
Bubble-Flux, which creates the entire sensitivity curve of the LS
workload at runtime by injecting bubbles of different sizes.

To deal with dynamism of batch workloads, we find that most
are long-lasting and their usage profiles can vary depending on the
phase of the application or the size of the input to the application.
For example, in Map-Reduce tasks (many batch applications are
structured as such), heavy computation of the Map phase is fol-
lowed by heavy disk IO of the shuffle operation prior to the Reduce
phase. We therefore adopt a simple memory pressure monitoring
scheme, which can be implemented in a lightweight manner using
hardware performance counters. If the monitoring provides hint
that the batch workload’s usage profile has changed (though there
may be false alarms in this), then we re-calibrate the contention
score corresponding to the batch workload’s current state. If the
contention score is determined to cause unacceptable level of con-
tention to the LS workload, then the batch workload is suspended
for some length of time. The ratio of suspend time to execution
time is higher the larger the contention score is. This mechanism
of suspend and resume is identical to the Phase-in-Phase-out (PiPo)
mechanism of Bubble-Flux. The performance impact of our mecha-
nism is reduced by the lightweight monitoring that provides hint
as to when to apply the more heavyweight mechanism. We show a
focused experiment to isolate the effect of our dynamic adaptation
mechanism in Section 5.4.

3.6 Scheduling

When a new batch workload arrives and needs to be scheduled by
PyTHIA among all available servers, it uses the Best Fit algorithm [9].
According to Best Fit, PyTHIA places the workload on the server,
which will have the smallest amount of headroom left after placing
the new workload, while respecting the QoS threshold of the LS
workload. To illustrate this, let us assume there are two servers H1
and H2. H1 is already running Redis (the LS workload) along with
batch workloads A and B. H2 is already running MongoDB (the LS
workload) along with batch workload C. Now PyTHIA has to decide
where to place an incoming batch workload D? Let us assume our
target is to maintain at least 95% QoS for both Redis and MongoDB
which translates to 50MB of allowed contention in case of Redis
and 30MB for MongoDB. Let us say, PYTHIA uses its models to
predict that the combined contention, if A, B, and D are run to-
gether, is 47MB, whereas if C and D are run together the combined
contention would be 18MB. Since this satisfies the QoS criteria for
both Redis and MongoDB, both H1 and H2 are valid placement
points. Now according to the Best Fit algorithm, PyTHIA chooses
H1 to place the incoming workload D because that would result
in the tightest packing of applications in the servers as only 2MB
of the allowed contention will be left in H1 as opposed to 12MB
of possible slack in case of H2. In case, there are no LS workloads
present in the server, then the need for protecting the QoS of the LS
workloads does not arise. However, we still need to decide where
an incoming application should be placed. PyTH1A could determine
the optimum limit for available shared resources for a server by
progressively increasing the bubble size of the bubble application
and monitoring the total number of swap-ins and swap-outs until
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Figure 8: The complete workflow of PYTHIA.

the number crosses an acceptable threshold (T). The insight is, if the
combined contention score of the batch applications becomes close
to this threshold contention score, one or more batch applications
might start thrashing — severely degrading its performance and
even risk the violation of their deadlines. After that, PYTHIA uses
the same Best Fit algorithm to decide the placement of the workload
as long as the combined contention does not cross T — €, where €
is a small buffer that prevents PyTHIA from going too close to the
thrashing state. If no such co-location is possible, PyTHIA sched-
ules the incoming workload to an empty server. The scheduling
approach avoids unnecessarily waking up idle servers and improves
overall utilization. PYTHIA can also trivially accommodate any other
placement algorithm than Best Fit. For example, if the number of
servers in the cluster is too large, First Fit algorithm, which would
place the job in the first server that can host the workload without
violating the QoS, can be used to reduce the placement search time.

3.7 Workflow of PyTHIA

The workflow of PyTHIA is illustrated in Fig. 8 and comprises of
a few major steps, which we describe below. While a majority
of PYTHIA’s steps are offline, the final step corresponding to co-
location prediction and scheduling is online (marked in yellow). As
we have mentioned earlier, PyTHIA is most effective with recurring
workloads, i.e. workloads that have been seen before, though their
loads may now be different. If the incoming workload that needs
to be scheduled is indeed an unknown one, then PyTHIA must go
through the expensive process of profiling it (all the four offline
steps 1-4 below) before the new workload can be scheduled.

Step 1: Single Workload and Sensitivity Characterization: The
first step performs contention characterization for each batch work-
load when singly running with a particular LS workload. Such
characterization is performed offline for each workload as origi-
nally proposed in [38].

Step 2: Pruning and Sampling: The second step reduces the com-
bination space by removing the batch workloads that are far too
contentious to have a chance of forming a safe co-location with
other batch workloads. To reduce the search space for training, for
each LS workload Q, using its sensitivity curve, we determine the
maximum contention score g that Q can tolerate given a QoS pol-
icy, and then we discard the batch workloads that create contention
higher than 0p even when singly co-located with Q.

Step 3: Data Collection to train the model of multiple co-
located workloads: From the pruned search space PYTHIA uses a
very small fraction (5% or less in practice) of the combinations of
multiple co-located batch workloads to build the prediction model.
For these executions, PyTHIA only collects the IPC values of the LS
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workload and measures the combined contention induced by the
co-located batch workloads.

Step 4: Model Construction: Here, we build our linear regres-
sion prediction model for the contention due to multiple batch
workloads. We use the single workload contention scores Byy, for
a batch workload W; from step 1, and the sparsely sampled com-
bined contention of multiple co-located batch workloads from step
3. The output of this modeling step are the weights cyy,’s and these
weights are specific to each n in an n-way co-location scenario and
to each LS workload.

Step 5: Scheduling: For an incoming workload, PYTHIA uses its
predictive model to select the set of servers on which the work-
load can be safely co-located without violating the QoS of the LS
workload already running on those servers. Then, PyTHIA uses the
Best Fit algorithm [9] to place the workload in the server with the
lowest amount of available shared resources left.

4 IMPLEMENTATION DETAILS

The various components of PYTHIA are implemented using a com-
bination of Python and shell scripts and consisting of roughly 5.5
KLOC. For all experiments, the LS and the batch workloads run
on different cores, achieved using the Linux command taskset.
In a NUMA machine, if a process running on a core of one socket
accesses memory on the DRAM associated with some other socket,
there is a performance impact. So PYTHIA pins the memory alloca-
tion on the same NUMA socket as the workload using the numactl
command. PYTHIA measures the IPC of the LS workload at the
server side using the Linux tool perf. The IPC values are sampled
every second and recorded as time series. We found that sampling
IPC every second did not have any observable performance im-
pact on the LS workload but sub 100ms sampling rate did have a
noticeable performance impact.
Cycle stealing to collect training data

To generate all the training data on our production cluster’s
resources, we employ a cycle stealing approach whereby we oppor-
tunistically execute training runs whenever a server is not running
production workload. There is a Master server and multiple Worker
servers. The Master server is responsible for generating a list of ex-
periments in which the LS workload and the co-located workloads
(either a bubble application, a batch workload, a combination of
batch workloads or nothing) are specified. Each Worker requests ex-
periments from the Master, executes the experiments on the nodes
managed by itself, returns the completed experiments to the master,
and requests for more experiments. The selected combination of
batch workloads by PYTHIA is randomly chosen in the search space
of all n-way batch workload combinations. In our environment, we
run the experiments in a Moab [4] managed cluster.

5 EVALUATION

5.1 Experimental Setup

Latency Sensitive Workloads: We use two popular LS applica-
tions: Redis [6] and MongoDB [5] for our evaluations and drive
these using the Yahoo Cloud Serving Benchmark (YCSB) [16]. Re-
dis [6] is an open source in-memory Key-Value database. It is also
often referred as a data structure server as it provides access to mu-
table data structures through a set of commands. MongoDB [5] is

Middleware ’18, December 10-14, 2018, Rennes, France

an open source, document-oriented NoSQL database. Instead of us-
ing traditional table-based relational-database structure, MongoDB
uses documents with dynamic schemas similar to JSON objects [3].
MongoDB uses embedded data models to reduce I/O and can sup-
port very fast queries.

Batch Workloads: We use a large variety of representative batch

workloads drawn from the widely used PARSEC [11] and SPEC2006 [25]

benchmark suites. However, after initial profiling for determining
the representative contention score, we found out that among the
12 PARSEC, 29 SPEC workloads, only 19 workloads were chosen
by PyTHIA as prospective co-locatable batch workload candidates.
Rest of the batch workloads had much bigger individual contention
scores resulting in degradation of the QoS of the LS applications
beyond acceptable limits (80% QoS policy in our case). Of these
surviving batch applications, 4 are from the PARSEC suite, while
the other 15 workloads are from SPEC. We also use two memory-
intensive workloads from the 8 CloudSuite [22] benchmarks - an
in-memory analytics workload and a graph analytics workload
and separately report specific results of these memory-intensive
workloads.

Cluster Setup and Co-location Settings All the experiments
were run on a 1,296-node homogeneous production cluster. Each
node had two sockets, each with one 2.60 GHz, 64-bit Intel Xeon
8-core E5-2670 processor (total 16 physical cores per node). Each
node had 32 GB memory divided between the two sockets. Each
processor had a 20 MB L3 cache (LLC) shared between the 8 cores
on each socket. Since all workloads are multi-threaded, we used
two cores per workload to preserve the general multi-threaded
behavior of the workloads. Since, each socket had only 8 cores, the
maximum degree of co-location that we use per socket was three
co-located batch workloads along with the LS workload (3 X 2 for
batch workloads + 2 cores for the LS workload). We used the second
socket of the processor to run lightweight scripts for controlling the
experiments and collecting data for model building, thus ensuring
negligible perturbation to the system being studied.

5.2 Prediction Accuracy of PyTHIA

Contention Prediction: We now evaluate if PYTHIA can precisely
predict the combined contention from multiple co-located batch
workloads on an LS workload, and compare the performance to
Murti-BuBBLE-UP. We first train our models by randomly sam-
pling a small subset (5%) of the entire space of all combinations of
one, two, and three co-located batch workloads chosen from the
finally selected 19 batch workloads. Then we predict the combined
contention from another combination of co-located workloads (the
test set) that was completely disjoint from the training set. We plot
relative error in the predicted contention error distribution as ker-
nel density estimation (KDE) [50], for both Redis and MongoDB
in Fig. 9. It can be observed that PyTHIA makes highly accurate
predictions as the error distributions for both Redis and MongoDB
are centered around zero and the shapes (Y-axis is the density of
the prediction error) are much narrower compared to the error
distributions obtained using MUuLTI-BUBBLE-UP. The median error
for PyTHIA with 5% sampling rate is 6.3% for Redis and -3.4% for
MongoDB while that for MuLTI-BUBBLE-UP is 185% and 61.5%.
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sampling rate

The standard deviation of the error distribution for PyTHIA is
15.2% for Redis and 10.6% for MongoDB compared to 28.6% and
17.1% for MurT1-BuBBLE-Up. Thus, PYTHIA’s prediction is both
more accurate and less variable relative to the prediction from
Mutrti-BuBBLE-UP. Fig. 9 also supports our earlier hypothesis about
the source of inaccuracies in MurTI-BuBBLE-UP. Since for MULTI-
BuBBLE-UP most of the prediction errors are positive, this indicates
that it systematically overestimates the contention.

InFig. 11 we show the accuracy of PYTHIA in predicting the actual
IPC of the LS workloads when co-located with three batch work-
loads corresponding to 1,330 different combinations. We see that
the IPCs predicted by PyTHIA are quite accurate for both MongoDB
and Redis as the bulk of the points fall close to the diagonal line
with very few outliers. Also, there is no systematic over-prediction
or under-prediction for either LS workload.

5.3 Learning Curves

We now evaluate how the prediction accuracy varies as we control
the sampling rate to train PyTHIA’s models. Fig. 10 shows how the
median and the 95th percentile prediction error for the combined
contention drops as we increase the sampling rate for co-location
with Redis and MongoDB. This characteristic would help in choos-
ing the optimum sampling rate where high accuracy is desirable
but minimizing the cost of training is also important since we use a
production cluster for collecting the training data. We perform 50
experiments at each sampling rate and plot the average. For both
Redis and MongoDB, it can be observed that even a sampling rate
of only 2.5% is good enough to achieve a high median accuracy
of prediction. However, if we are interested in the 95/" percentile
error, we need a higher sampling rate of 5%. Going higher than that
does not significantly improve the metric. On the lower extreme,
as the sampling rate goes to 1% and below, we see that prediction
accuracy dramatically degrades as the model simply does not have

Figure 10: Learning curves for predicting contention with Redis and MongoDB
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Figure 12: Sensitivity curves of Redis under different read/write ratios and
loads.

sufficient information to make accurate predictions. For sampling
rate of 2% and higher, the variation in error is insignificant for
PyTHIA’S predictive models.

5.4 Synergy of PyrHia with Dynamic
Scheduling, Monitoring, and Control

Here we see the quantitative rationale for PyTHIA’s design to handle
runtime usage changes in LS workloads. Fig. 12 shows the sensi-
tivity curves of Redis under different read/write ratios (3 levels)
and different loads measured in 103 operations/s (2 levels). As in-
troduced in Sec. 2.1, each of these sensitivity curves is determined
offline by co-locating Redis with a bubble microbenchmark with
increasing contention score. It can be seen that the IPC of Redis
is different in the different usage cases. At runtime, PYTHIA uses
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Figure 14: Increase in the degree of co-location marginally affects the perfor-
mance of the batch workload.

a bubble with a particular known contention score and measures
the corresponding IPC of the LS workload. Then, from the pre-
determined set of sensitivity curves, it determines the appropriate
sensitivity curve to use, which is an accurate reflection of the cur-
rent usage profile of the LS workload. In this approach, PyTHIiA
reduces the online overhead from B measurements of Bubble-Flux
to a single measurement, at the cost of the offline profiling and the
quantization of the usage profiles.

Here we evaluate the role a dynamic mechanism (Bubble-Flux’s
PiPo for specificity) that is coupled with PyTH1A, plays in shielding
the LS workload from uncertainties in the intensity of a co-located
batch workload. In Fig. 13, we co-locate a batch workload from the
PARSEC benchmark, Streamcluster, with Redis, the LS workload.
We observe that through the load changes in Streamcluster, during
low load, the QoS of Redis stays well above the user-specified QoS
threshold (which for this experiment is defined as 95%). However,
when the Streamcluster load increases (the second phase between
100 and 200 s), the QoS threshold is violated most of the time. How-
ever, PYTHIA, using the PiPo mechanism can control the proportion
of execution allowed to the batch workload. Thus it can control the
contention that the batch workload can cause, so that even when
the batch workload is running at high load, we can still preserve
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the QoS of the LS workload. Thus, we see that in the 4th phase, the
QoS of Redis stays above the threshold line.

5.5 Performance Analysis of PyTHIA

PyTHIA’s modeling phase is composed of the training data collec-
tion and the model construction, both of which happen offline. For
the first part, PyTHIA’s training data collection is opportunistic as
it tries to utilize idle nodes. Hence it is not possible to quantify the
total amount of time to gather training data for PyTHI1A’s models
since there is not a continuous period of time. We found that each
experiment (corresponding to an execution of an LS workload and
a certain number of co-located batch workloads) ran for 195 sec
on average. Moreover, since a sampling rate of 5% gives accurate
enough results, our modeling and data collection time are signifi-
cantly shorter. For the second offline part, model construction is
very efficient and takes less 40 millisecond for various sampling
rates and co-location combinations (21 ms for 2.5% sampling rate
and 35 ms for 30%). This is a consequence of using a simple lin-
ear model with constant coefficients, which despite its simplicity
provides accurate predictions. We also estimate that this modeling
step would take approximately 1.48 sec and 12.07 sec if 100 and
200 different batch workloads are used (instead of the 19 that we
used), respectively. Thus PYTHIA’s modeling step uses just 9.1y s
per sample and can handle unto 2.17M co-location combinations/s
at a sampling rate of 5%. For the online overhead, recall that the
actual prediction for the combined contention from multiple work-
loads is just a dot-product between the individual contentions of
the batch workloads and the corresponding coefficients from the
trained model. Hence the prediction in PyTHIA is extremely fast
and each prediction took less than 1 millisecond in our experiments.

5.6 Impact of Co-location on Batch Workloads

An obvious question at this point is, as a result of these co-locations,
how much do these batch workloads suffer. If they suffer signifi-
cantly so as to miss even their loose time deadlines, then the ques-
tion of co-locating multiple batch applications will become moot
and we can then rely on prior work. We see from Fig. 14 that for 3
co-located batch workloads along with the LS workload, the batch
workloads suffer only less than 10% degradation in their individ-
ual performance without affecting the QoS of the LS workload.
Since batch workloads are inherently tolerant to small performance
degradation, multiple co-location is thus feasible.

Recall, for each LS workload, our model assigns a single con-
tention coefficient capturing the impact due to mutual interference
on each of the batch workloads. The question that arises is why
such a single coefficient per batch and LS workload combination is
good enough, rather than a more complex model where the coeffi-
cient depends also on the exact set of co-located batch workloads.
Proof of this can be seen in Fig. 14, which shows the mean, median,
and lower 5% CPU utilization of various co-location combinations
of the 19 batch workloads and for three different degrees of co-
location for both Redis and MongoDB. Here we measure the effect
of mutual interference through the variations in the CPU utilization
because when a batch workload suffers from mutual interference,
its CPU utilization also drops. These batch workloads are primarily
CPU-bound and so we measured the CPU utilization of cores used
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Figure 16: Cluster utilization for various QoS policies.

interference from other co-located batch workloads. For 17 of the 19 batch applications,

the variation is very small. Bodytrack and Ferret are outliers (not shown here).

by the batch workloads. It can be observed that as we increase the
degree of co-location, the CPU utilization of the batch workloads
decreases but only by very small amounts. For three co-located
batch workloads, the median CPU utilization drops by only 1.4% for
Redis and 3% for MongoDB compared to a single co-located batch
workload. Further proof for this comes from Fig. 15, where we plot
the coefficient of variation (CV) of the CPU utilization (which is
standard deviation over mean) for a batch workload B; when it
was co-located with any other batch workload and the LS work-
load. The magnitude of this variation (on the Y-axis) is extremely
small for 17 out of the 19 batch workloads—maximum of 0.7% for
MongoDB and 1.3% for Redis. This observation highlights that for
the majority of the cases (17 out of 19), a single coefficient per
batch workload is adequate and there is no need to have different
coeflicients for each specific batch workload combination, which
would have significantly complicated the training process.

In contrast to the general trend, the CV measures for the two
outliers Bodytrack and Ferret are much higher—11% for Bodytrack
and 3% for Ferret w.r.t. Redis and 44% for Bodytrack and 40% for
Ferret w.r.t. MongoDB. This indicates that their offered contention
depends exactly on which other batch workloads are co-located
with them. Digging deeper, we find that the CPU utilization of
Bodytrack (also Ferret) differs depending on how many other batch
applications it is co-located with. We found that Bodytrack, which
is a computer vision application for tracking human body through
a sequence of images, is very sensitive to available memory band-
width [10]. Thus under memory contention from the co-located
workloads its CPU utilization drops with increase in the degree of
co-location because of the reduced available memory bandwidth.
Ferret is a content-based image similarity search application. It
keeps a database of feature vectors of images in memory to find the
images most similar to a given query image and its working-set size
is unbounded [12]. Thus, with increase in the degree of co-location,
the CPU utilization of Ferret drops due to both cache and memory-
bandwidth interference. For such volatile workloads, we can create
a more fine-grained model that has coefficients corresponding to
the exact combination of other batch workloads co-located with the
volatile workload.

Co-location with Memory-Intensive Applications:

Since some batch applications are memory-intensive we exper-
iment with two such applications—a graph analytics application
and an in-memory analytics application from CloudSuite [22]. We
show the result for instances of these batch applications running

Table 2: Normalized IPC of latency-sensitive workloads when co-located with
one or more instances of a memory-intensive batch application.

Graph analytics In-memory analytics
# Co-located appli- 1 2 3 1 2 3
cation instances
Redis 0.9521 | 0.9200 | 0.7706 || 0.9523 | 0.9355 | 0.6061
MongoDB 0.9770 | 0.9418 | 0.9117 || 0.9806 | 0.9860 | 0.6854

with Redis and MongoDB in Table 2. We see that PyTHIA can safely
co-locate up to 2 instances of the graph analytics application with
Redis and up to 3 instances with MongoDB, given a QoS threshold
of 90%. The corresponding numbers are 2 and 2 for the in-memory
analytics application.

5.7 Improvement in Cluster Utilization

We now evaluate if PYTHIA can improve the utilization of a cluster
and compare it with Bubble-Up and MuLrT1-BuBBLE-Up. The utiliza-
tion is measured as the number of cores on which some application
process is running divided by the total number of available cores. A
higher value is better. We start with a cluster of 500 servers where
we restrict the scheduler to use a single socket with 8 cores for co-
location (i.e., 500 X 8=40,000 available cores in total), leaving aside
the other socket for the experimental book-keeping. Experiments
were initialized by placing an LS workload on each server, using
two cores each. A randomly selected incoming batch workload
(from the set of 19 batch workloads) is scheduled by PyTHIA. We
run this experiment for a total of 500 arrivals of batch workloads.
The QoS policy for the LS workload is specified as x%, which means
that the minimum acceptable QoS is x% of the QoS when the work-
load is run without interference. So the higher the value of x is,
the stricter is the QoS requirement. PyTHIA would co-locate the
incoming batch workload on one of the servers if the estimated
combined contention does not violate the QoS policy. Otherwise,
the workload would be scheduled on a separate server. Since we
use two cores for the LS workload and two for each of the batch
workloads, the maximum degree of co-location possible is three.
These experiments were ran separately with Redis and MongoDB
as the LS workload and for different QoS policies.

Fig. 16 shows that PyTH1A significantly improves the utilization
compared to Bubble-Up and Murti-BuBBLE-UP. Utilization with
Bubble-Up always remains 0.5 because it can handle at most one
batch workload along with the LS workload and both together
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occupy 4 cores out of 8 available. When the QoS policy is very strict
such as 99%, both PyTHIA and MuLTI-BUBBLE-UP find it difficult
to identify a suitable server for co-location because the combined
contention has to be small. Hence utilization does not increase
much, but still PyTHIA outperforms MurTI-BusBLE-Up. For a more
relaxed QoS policy, such as 90%, PYTHIA can more aggressively
co-locate workloads and achieves near perfect utilization of 99% for
both Redis and MongoDB. In contrast, MULTI-BUBBLE-UP is only
able to achieve a utilization of 72% and 68%, respectively for Redis
and MongoDB. For a 95% QoS policy, PYTHIA achieves a gain of
71% in utilization over MurTI-BUBBLE-UP.

Fig. 17 shows the corresponding number of servers used to sched-
ule all the 500 incoming batch workloads. Ability to pack jobs on
lesser number of servers translates to energy savings as empty
servers can be put into an idle or a low-power state. Since we allow
at most three co-located batch workloads in a server, the minimum
number of servers required for co-location is 500/3~167. Note that
for the 80% QoS policy, PyTHIA exactly uses this minimum number
of required servers, while MULTI-BUBBLE-UP uses 65% more servers.
PyTHIA used the Best Fit algorithm for finding the best co-location
spot but using the Worst Fit (use the server where there will be the
greatest headroom left) or the First Fit (use the first server with
available space) algorithm showed similar results.

6 DISCUSSION

Co-location scenario: We define the co-location scenario as one
LS workload and multiple batch workloads. In general, our con-
tention characterization can adapt to the co-location scenario with
multiple LS workloads by considering one as LS workload and the
other as batch workloads and vice-versa. However, the scheduling
algorithm will be more complicated when an additional LS work-
load is scheduled and its service-level objectives (SLO) should also
be guaranteed.

Heterogeneous Clusters: PyTHIA can handle non-homogeneous
clusters by training its model separately for each type of processor
architecture in the cluster. This does linearly increase the profiling
and training cost in proportion to the number of architectures.
Such training cost can be reduced by modeling the contention score
as a function of the architectural parameters, such as, core count,
cache-size, TLB size, and memory bandwidth. Thus, a bubble-size
or other model parameter measured in one type of processor can
be translated to another type of processor architecture.
Contentions Along Network and Disk I/O: PyTH1A focuses on
contentions in memory subsystems for which no proper isolation
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mechanism is yet available on commercial processors. However, our
approach can be extended to include network and disk resources by
designing bubbles in those resource dimensions. PYTHIA’s regression-
based combined contention prediction model is generic and should
be effective for any type of contention as long as the individual
contentions from each batch workload is effectively captured.

7 RELATED WORK

Isolation mechanisms: A large body of work focuses on isolation
techniques for CPU [24, 31, 59], cache [26, 30, 46, 55], memory con-
trollers [19, 43], and network [27, 51]. Heracles [34] is a feedback-
based dynamic controller that combines best isolation mechanisms
along different dimensions and uses special hardware features (such
as Intel’s Cache Allocation Technology) to meet latency targets for
the LS workloads. However, many of these techniques are still not
available in the off the shelf machines that is used in most of data-
centers. Novakovic et al. [44], Maji et al. [36, 37], and Leverich et
al. [32] showed that performance degradation due to interference is
still a reality, especially due to contention in the LLC [52]. PYTHIA is
orthogonal to these works as in the presence of imperfect isolation,
it helps to find the best workload placement.

Performance prediction and control: Several prior works fo-
cused on predicting application performance [17, 18, 32, 38, 41, 56,
59, 59]. Paragon [17] predicts workload performance on various
target architectures and server configurations through collabora-
tive filtering. Quasar [18] extends that idea to predict performance
even in scale-out and scale-up architectures. CPI? [59] uses cycle
per instruction (CPI) to monitor and detect degraded performance.
DeepDive [44] detects interference between co-located VMs and
mitigates the problem by migrating the VM to a new host and thus
can be very costly. IC? [37] shows how to detect and mitigate in-
terference in clouds through application reconfiguration. Both are
reactive systems as opposed to our predictive scheduling model.

8 CONCLUSION

Co-location of multiple workloads on the same server can greatly
improve cluster utilization. However, co-location increases the risk
of violating the QoS guarantee for the latency sensitive workloads
due to contention on the shared resources. Here we present PYTHIA,
a co-location manager that can achieve better scheduling by accu-
rately predicting the severity of contention from multiple applica-
tions and its effect on the latency-sensitive workload. It handles
changes in the application characteristic through limited use of
dynamic scheduling, monitoring, and control.
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