
ApproxDet: Content and Contention-Aware Approximate Object
Detection for Mobiles

Ran Xu
Purdue University
xu943@purdue.edu

Chen-lin Zhang
Nanjing University

zhangcl@lamda.nju.edu.cn

Pengcheng Wang
Purdue University

wang4495@purdue.edu

Jayoung Lee
Purdue University

lee3716@purdue.edu

Subrata Mitra
Adobe Research

subrata.mitra@adobe.com

Somali Chaterji
Purdue University

schaterji@purdue.edu

Yin Li
University of Wisconsion-Madison

yin.li@wisc.edu

Saurabh Bagchi
Purdue University

sbagchi@purdue.edu

ABSTRACT
Advanced video analytic systems, including scene classification and
object detection, have seen widespread success in various domains
such as smart cities and autonomous systems. With an evolution of
heterogeneous client devices, there is incentive to move these heavy
video analytics workloads from the cloud to mobile devices for low
latency and real-time processing and to preserve user privacy. How-
ever, most video analytic systems are heavyweight and are trained
offlinewith some pre-defined latency or accuracy requirements. This
makes them unable to adapt at runtime in the face of three types of
dynamism — the input video characteristics change, the amount of
compute resources available on the node changes due to co-located
applications, and the user’s latency-accuracy requirements change.
In this paper we introduce ApproxDet, an adaptive video object
detection framework for mobile devices to meet accuracy-latency
requirements in the face of changing content and resource con-
tention scenarios. To achieve this, we introduce a multi-branch
object detection kernel, which incorporates a data-driven modeling
approach on the performance metrics, and a latency SLA-driven
scheduler to pick the best execution branch at runtime. We evaluate
ApproxDet on a large benchmark video dataset and compare quan-
titatively to AdaScale and YOLOv3. We find that ApproxDet is able
to adapt to a wide variety of contention and content characteristics
and outshines all baselines, e.g., it achieves 52% lower latency and
11.1% higher accuracy over YOLOv3. Our software is open-sourced
at https://github.com/purdue-dcsl/ApproxDet.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; •Computingmethodologies→Track-
ing; Object detection; Neural networks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’20, November 16–19, 2020, Virtual Event, Japan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7590-0/20/11. . . $15.00
https://doi.org/10.1145/3384419.3431159

KEYWORDS
Object Detection, Mobile Vision, Resource Contention, Approxi-
mate Computing, Machine Learning

ACM Reference Format:
Ran Xu, Chen-lin Zhang, Pengcheng Wang, Jayoung Lee, Subrata Mitra,
Somali Chaterji, Yin Li, and Saurabh Bagchi. 2020. ApproxDet: Content
and Contention-Aware Approximate Object Detection for Mobiles. In The
18th ACM Conference on Embedded Networked Sensor Systems (SenSys ’20),
November 16–19, 2020, Virtual Event, Japan. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3384419.3431159

1 INTRODUCTION
Mobile devices with integrated cameras have seen tremendous
success in various domains. Equipped with increasingly powerful
System-on-Chips (SoCs), mobile augmented reality (AR) devices
such as the Microsoft Hololens and Magic Leap One, along with top-
of-the-line smartphones like iPhone 11 Pro and Samsung Galaxy
S20, are opening up a plethora of new continuous mobile vision
applications that were previously deemed impossible. These appli-
cations range from detection of objects around the environment for
immersive experience in AR games such as Pokemon-Go [10], to
recognition of road signs for providing directions in real-time [8],
to identification of people for interactive photo editing [65], and to
Manchester City’s AR-driven stadium tour. A fundamental vision
task that all of these applications must perform, is object detection
on the live video stream that the camera is capturing. To maintain
the immersive experience of the user (e.g., for AR games) or to give
usable output on time (e.g., for road sign recognition), such tasks
must be performed in near real-time with very low latency.

Computer vision and computer systems research working to-
gether has made significant progress in lightweight object detection
applicable to mobile settings for still images in recent years [46, 61,
69, 73], thanks to development of efficient deep neural networks
(DNNs) [25, 29, 34, 81]. However, directly applying image-based
object detectors to video streams suffers, especially in mobile set-
tings [82]. First, applying a detector on all video frames introduces
excessive computational cost and would often violate the latency
requirements of our target continuous vision applications. Second,
image-based object detectors are not cognizant of the significant
temporal continuity that exists in successive video frames (e.g., a

https://github.com/purdue-dcsl/ApproxDet
https://doi.org/10.1145/3384419.3431159
https://doi.org/10.1145/3384419.3431159


SenSys ’20, November 16–19, 2020, Virtual Event, Japan Xu et al.

Figure 1: ApproxDet: The first system of mobile video ob-
ject detection that takes both video content-awareness and
resource contention-awareness within its ambit. Compared
to a widely used object detector [62] optimized for a target
latency requirement (orange curve), ApproxDet (blue curve)
keeps its runtime latency (left) below the requirement and
achieves better accuracy (right).
static scene with a slowly moving object), unable to map this to the
latency budget. To overcome these algorithmic challenges, the com-
puter vision community has proposed someDNNmodels [20, 39, 84]
for video object detection and tracking. Several lightweight DNN
models [45, 83] that are suitable for mobile devices were developed.

Despite these efforts, we argue that the system challenges of
video object detection for continuous vision applications on resource-
constrained devices remain largely unsolved [3, 5, 6]. A major short-
coming is that none of the existing approaches can adapt to runtime
condition changes, such as the content characteristics of the input
videos, and the level of contention on the edge device. Modern mobile
devices1 come with increasingly powerful SoCs having multiple
heterogeneous processing units, and no longer process just a single
application at a time. For example, both iOS and Android sup-
port multiple background tasks [4, 14, 15], such as an always-on
personal assistant, e.g., Siri running a DNN for speech recogni-
tion (GPU contention), or a firewall constantly inspecting packets
(memory-bandwidth contention). These tasks can run simultane-
ously with a continuous vision application that requires a video
object detector, leading to unpredictable resource contention on
mobile devices similar to a traditional server setting [13, 52, 53, 78].
Such concurrent applications or background tasks can compete
with object detection, drastically increasing the object detector’s
latency. Consider the example of a widely used DNN-based object
detector: Faster R-CNN (FRCNN) [62], integrated with MedianFlow
(MF) object tracking [38] and optimized for a latency requirement
of 100 milliseconds (ms)2. The orange curve in Figure 1 shows the
latency (left) and accuracy (right) of this [FRCNN + MF] processing
an input video at different GPU contention levels on an embedded
device (NVIDIA TX2). Without contention, the detector has a la-
tency of ≈ 64 ms. However, as the GPU contention level increases,
we observe a drastic increase in detection latency. While the ac-
curacy remains the same, the latency of the detector fluctuates
significantly and violates our 100 ms latency requirement. Differ-
ent from server-class devices [78], our target mobile devices have
1In this paper, we use “mobile devices” for the target platform, though without loss of
generality, it applies to mobile and embedded platforms. The commonality is that both
are using increasingly powerful SoCs, but are still resource constrained, relative to
the servers where streaming video analytics are typically run. Further, both are used
to run co-located applications (mobiles more so than embedded), which can interfere
with the video analytics.
2We pick a combination of detector and tracker configurations that satisfies the latency
requirement in 95% of the video frames from a validation dataset.

limited ability to isolate co-located applications from interference,
stemming from the paucity of VM-like isolation mechanisms.

To address this issue, we propose ApproxDet, a novel system
that takes both video content-awareness and resource contention-
awareness within its ambit. In contrast to the static FRCNN+MF
baseline in Figure 1, ApproxDet manages to keep a latency below
the requirement with increased level of contention while achieving
a better accuracy. To this end, ApproxDet uses a single model with
multiple approximation knobs that are dynamically tuned at run-
time to stay on the Pareto optimal frontier (of the latency-accuracy
curve in this case). This approach is in line with recent work on
runtime-determined approximations in stateful distributed applica-
tions by us [49–51, 77] and others [23, 41]. We refer to the execution
branch with a particular configuration of the approximation knob
as an approximation branch (AB). This overall functionality is
supported by three core technical contributions of this work. First,
ApproxDet models the impacts of the contention level to the latency
of the ABs. Second, our model combines an offline trained latency
prediction model and an online contention sensor to precisely pre-
dict the latency of each AB in our system. Thus ApproxDet can
adapt to resource contention at a given latency budget at runtime,
an ability especially critical for the deployment on edge devices as
their resources are limited and shared. Third, ApproxDet further
considers how the video content influences both accuracy and la-
tency. ApproxDet leverages video characteristics such as the object
motion (fast vs. slow) and the sizes and the number of objects, to
better predict the accuracy and latency of the ABs, and to select
the best AB with reduced latency and increased accuracy.

Figure 2 presents an overview of ApproxDet. The object detec-
tion pipeline comprises of an object detector DNN based on our
modified version of FRCNN [62], and a video object tracker that
can be selected from among a set of choices. Both the detector and
tracker are jointly approximated to achieve the required point in the
accuracy-latency trade-off curve. Importantly, with the joint model-
ing of resource contention and content characteristics, ApproxDet
can dynamically tune the approximation knobs, including the inter-
val of performing object detection on video frames, the input shape
of the frames and the number of proposals in the object detector
DNN, the choice of object trackers, and the down-sampling ratio of
the tracker. This means, in response to a resource contention from
the GPU, ApproxDet can move to a more aggressive approximation
setting of the detector DNN to bring down the latency since the
detector DNN is more sensitive to the GPU contention. Moreover,
in case of a content change in the video frame, e.g., a rapidly moving
object, ApproxDet is able to switch over to a different AB where
detector DNN is triggered more frequently to mitigate the tracker
failure due to the fast-moving objects.

To our best knowledge, ApproxDet is the first system that ac-
counts for the joint adaptation to video content and resource con-
tention for mobile object detection. Distinct from prior work that
optimizes multiple concurrent DNN applications [18, 26, 36], our
system treats the contention as a black box. Our principle is that
we neither know the context nor have control over the contention
in real-world systems, as these video-analytic systems are typically
user-space processes without any OS privilege. To estimate the
contention, ApproxDet uses the current observed latency to map
to the contention level, and adapts to use the AB that can satisfy



ApproxDet: Content and Contention-Aware Approximate Object Detection for Mobiles SenSys ’20, November 16–19, 2020, Virtual Event, Japan

Table 1: A comparison of the key features of our Approx-
Det solution to previous approaches. ApproxDet provides
the most flexible framework for adaptive video object de-
tection. “Single/multi model”: if a method uses shared exe-
cution branch for different control parameters. “Switching
cost considered”: a technique takes into account switching
cost while making its decision.

Solution Single (S)/
Multi (M)
Model

Tuning
Knobs

Switching
cost con-
sidered

Dynamic
Scenario

Open
Source

Mobile/
Server
(M/S)

Video/
Image

ApproxDet S si, shape,
nprop,
tracker,
and ds

M VID

Faster R-CNN S shape,
nprop

S VID

YOLO, SSD S shape S VID

AdaScale S scale S VID

MCDNN [Mo-
biSys16]

M models M+S IMG

NestDNN [Mo-
biCom18]

S # filters M IMG

RANet
[CVPR20]

M resource
budget

S IMG

Supported Partially Supported Not Supported

the latency requirement from the user. Our evaluation bears out
that this design choice is particularly effective for handling varied
forms of contention under one simple algorithm. Table 1 further
contrasts the features of ApproxDet with existing works.

To evaluate our model, we conduct extensive experiments on Im-
ageNet Video Object Detection (VID) dataset [63] and compare our
ApproxDet to a number of baselines, including AdaScale [9], Faster
R-CNN [62], Faster R-CNN with tracking [38], and YOLOv3 [61].
Our results suggest that ApproxDet is able to adapt to a wide variety
of contention and content characteristics and achieves 52% lower la-
tency and 11.1% higher accuracy over the latest YOLOv3 optimized
for efficiency and accuracy, and outshining all other baselines.

In summary, our work makes the following contributions:
(1) We show that resource contention in mobile/embedded devices

can significantly degrade the latency requirements of continu-
ous vision applications.

(2) We propose ApproxDet, an adaptive object detection framework
that takes the runtime content characteristics and resource
availability into consideration to dynamically optimize for the
best accuracy-vs-latency tradeoff. This optimization is done
using a single model with different approximation branches,
rather than using an ensemble of models, leading to reduced
switching overhead and the memory footprint.

(3) ApproxDet makes use of video-specific features and does not
simply consider a video as a set of discrete image frames. For
example, it uses past video content characteristics (e.g., size of
the objects) to guide its choice of the optimal approximation
branch.

2 BACKGROUND
This section introduces the background of ApproxDet, including
object detection and tracking models used in ApproxDet and the
context of approximate computing on edge devices.

2.1 Object Detection
Given an input image or video frame, an object detector aims at
locating tight bounding boxes of object instances from target cate-
gories. In terms of network architecture, a CNN-based object de-
tector can be divided into the backbone part that extracts image
features, and the detection part that classifies object regions based
on the extracted features. The detection part can be further divided
into two-stage [12, 62] and single-stage detectors [43, 46, 61]. Two-
stage detectors usually make use of Region Proposal Networks
(RPN) for generating regions-of-interest (RoIs), which are further
refined through the detection head and thus more accurate.

Our work builds on Faster-RCNN [62] — an accurate and flexi-
ble framework for object detection and a canonical example of a
two-stage object detector. An input image or video frame is first
resized to a specific input shape and fed into a DNN, where image
features are extracted. Based on the features, a RPN identifies a
pre-defined number of candidate object regions, known as region
proposals. Image features are further aggregated within the pro-
posed regions, followed by another DNN to classify the proposals
into either background or one of target object categories and to
refine the location of the proposals. Our key observation is that the
input shape and the number of proposals have significant impact
to the accuracy and latency. Therefore, we propose to expose input
shape and number of region proposals as tuning knobs in ApproxDet.

Another line of research develops single-stage object detec-
tion [46, 61]. Without using region proposals, these models are
optimized for efficiency and oftentimes less flexible. We consider
one of the representative single-stage detectors as a baseline [61] in
our experiments. YOLO simplifies object detection as a regression
problem by directly predicting bounding boxes and class probabili-
ties without the generation of region proposals.

2.2 Object Tracking
Object tracking seeks to locate moving objects over time within
a video. We focused on motion-based visual tracking due to its
simplicity and efficiency. Amotion-based tracker assumes the initial
position of each object is given in a starting frame, and makes use of
local motion cues to predict the object’s position in the next batch of
frames. Our system considers a set of existing motion-based object
trackers — MedianFlow [38], KCF [27], and CSRT [47]. The key
difference lies in the extraction of motion cues, via e.g., optical flow
or correlation filters, leading to varying accuracy and efficiency
under different application scenarios. We thus propose to enable
the adaptive choice of the trackers as one of our tuning knobs.

Another important factor of object tracking performance is the
input resolution to a motion-based tracker. A downsampled ver-
sion of the input image allows to better capture large motion and
thus to track fast-moving objects, while a high-resolution input
image facilitates the accurate tracking of objects that move slowly.
Therefore, we further expose the downsampling ratio of the input
image as another tuning knob for tracking.

2.3 Approximate Computing and Adaptation
Many computations are inherently approximate—they trade off
quality of results for lower execution time or lower energy. Approx-
imate computing has emerged as an area that exposes additional



SenSys ’20, November 16–19, 2020, Virtual Event, Japan Xu et al.

Figure 2: The workflow of the adaptive object detection framework used in our ApproxDet.

sources of approximation at the computer system level, including
resource-constrained mobile and embedded platforms. One chal-
lenge in approximate computing is that the accuracy and perfor-
mance of applying approximate techniques to a specific application
and input sets are hard to predict and control [1, 16, 57]. This
may lead to missed optimization opportunities, unacceptable qual-
ity outputs, and even incorrect executions. The two fundamental
causes is that approximation techniques are not content-aware and
contention-aware. Some recent work has started to address these
issues. For example, Input Responsive Approximation (IRA) [40]
and VideoChef [76] have brought in content-aware approximation
for image processing and video processing pipelines respectively.

To the best of our knowledge, there is no solution that makes
video object detection systems on mobile platforms adaptive to
resource contention. Recently, Min et al. [56] assess the runtime
quality of sensing models in the multi-mobile-device environment
so that the best device is selected as a function of model accuracy.
However, we have not seen similar work on the video object detec-
tion task. There are several works that provide tunable knobs to
trade off accuracy-versus-latency, primarily in the image process-
ing context [18, 32, 79], and some in video processing context [9].
It is conceivable that these knobs can be reconfigured to an op-
timal setting continuously as contention varies. However, there
are key systems challenges that have to be solved before that end
goal can be achieved. Such challenges include how to sense con-
tention, how to change the knob in response to a specific level of
contention, and how to optimize for the switching overhead from
one approximation level to another.

3 OVERVIEW
Figure 2 presents the overall workflow of our system ApproxDet.
Our system consists of two modules — a scheduler and a multi-
branch object detection framework. The detection framework takes
a video frame and a configuration as an input and produces the
detection results while the scheduler decides which configuration
the detection framework should use.

The detection framework includes two kernels: a detection kernel
and a tracking kernel. This follows the common practice for video
object detection that combines the heavy-weight detection and the
light-weight tracker [45, 85]. At a high-level, the detection frame-
work exposes five tuning knobs. With each tuning knob varying in
a dynamic range, we construct a multi-dimensional configuration

space and call the execution path of each configuration an approx-
imation branch (AB). The accuracy and the latency (execution
time) are different for each AB and the values depend upon the
video content characteristics (e.g., still versus fast-moving) and the
compute resources available (e.g., lightly-loaded versus heavily-
loaded mobile). To efficiently select an AB at runtime according to
the given (and possibly changing) user requirement, the scheduler
estimates the current latency and accuracy of each branch. The
scheduler then selects the most accurate/fastest branch according
to the specific user requirement.

We train an accuracy model and a latency model offline to sup-
port such estimation online. To better predict such online perfor-
mance metric, we build two lightweight online modules – (1) a
content-aware feature extractor, which extracts the height, width,
tracks the object information of the last frame, and calculates the
object movements of the past few frames, and (2) a contention sensor,
which senses the current resource contention level. The scheduler is
designed to run occasionally to re-calibrate the best approximation
branch based on a learnable interval called “scheduler interval”,
which represents the number of frames that the configuration of
the detection framework can be maintained.

4 DESIGN ELEMENTS OF APPROXDET
4.1 Multi-branch Object Detection Framework
To support the runtime adaptive object detection framework on
videos, we first design a multi-branch object detection framework,
with light switching overheads among branches for mapping to
runtime changes. Different from object detection on still images,
videos have temporal similarities and an object tracker is used to
reduce the runtime cost with minor accuracy drop. In ApproxDet,
the detection DNN produces initial bounding boxes for each ob-
ject in the input image, while the tracker tracks objects between
successive frames.

The overwhelming majority of work on lightweight object de-
tection is for images, e.g., YOLOv3 [61] and SSD [46], thus being
agnostic to video characteristics inherent to the temporal relation
between image frames. This in turn influences ApproxDet’s design
decisions. For the detection DNN, we choose the popular Faster-
RCNN with ResNet-50 as the backbone [62]. It shows state-of-the-
art performance with medium speed when compared with other
detection models. For the tracker part, we experiment with a set
of 4 trackers — MedianFlow [38], KCF [27], CSRT [47], and Dense



ApproxDet: Content and Contention-Aware Approximate Object Detection for Mobiles SenSys ’20, November 16–19, 2020, Virtual Event, Japan

Figure 3: Our multi-branch object detection framework Ap-
proxDet with the five runtime tuning knobs.

Optical Flow [19]. These trackers are open-sourced in OpenCV
with reasonable performance. We then expose five tuning knobs
for this object detection framework that our scheduler controls
programmatically at runtime to achieve the right accuracy-latency
tradeoff. We introduce them below and illustrate them in Figure 3.
• Sampling interval (si): For every si frame, we run the heavy-
weight object detection DNN on the first frame and light-weight
object tracker on the rest of the frames.
• Input shape (shape): The resized shape of the video frame that
is fed into the detection DNN.
• Number of proposals (nprop): The number of proposals gener-
ated from the Region Proposal Networks (RPN) in our detection
DNN.
• Tracker type (tracker ): Type of object tracker.
• Down-sampling ratio (ds): The downsampling ratio of the frame
used by the object tracker.
Generally, we have empirically observed that smaller si , larger

shape , more nprop, and smaller ds will raise the accuracy and vice-
versa. We will discuss the specifics of the knobs in Section 5.1.

4.2 Content Feature Extraction
As multi-branch object detection framework is designed, an impor-
tant prerequisite is to precisely estimate the accuracy and compu-
tation time (latency) of each approximation branch. To start with,
the content feature has great impact on both the accuracy and la-
tency of each AB based on the following two observations – (1)
tracker latency is affected by the number and area of the objects be-
cause tracker algorithms take the bounding boxes of the detection
frames as inputs and calculate features inside each box; (2) both
detection and tracker accuracy are affected by the content in the
video. For example, detection DNNs perform consistently poorly
with small objects on MS COCO dataset [44], including Faster-
RCNN [62], SSD [46], and YOLO [60]. Moreover, both detection
DNN and tracker find it harder to deal with fast-moving objects.
Some previous works [8] mention that movement between frames
can be used as a feature to trigger the heavy detection process. This
implies that for video object detection systems, we need to extract
these content features to improve the accuracy and latency of our
models. In this paper, we mainly consider two types of content
features, described next.

4.2.1 Object Basic Features. We use the number of objects and the
summed area of the objects as features for modeling the tracker
latency. The intuition is that some light-weight trackers’ latency

increases proportionally with the number of objects and the area of
the objects since each object is tracked independently, and the larger
the area, the more tracking-related features need computation.

We empirically verify that the latency of the object trackers is
affected by both the number and sizes of the objects, as shown
in Figure 4 and 5. Specifically, we use 10% of the ImageNet video
object detection (VID) training dataset to generate the latency data
samples. The detailed data split can be found in Section 6.2.

4.2.2 Object Movement Features. We use the recent movement of
objects as a feature for modeling the framework accuracy. More
rigorously, we define the movement as the Euclidean distance of the
objects’ centers and we take the mean movement of all the objects
in the recent frames. The intuition is that the faster the objects
move in the video frame, the lower the accuracy, especially for the
execution branches with higher sampling interval. We use the same
data split as in Figure 4 and 5 to generate our accuracy data. We
empirically show this in Figure 6, where we divide the validation
dataset into three subsets — videos with slow, medium, and fast
moving objects and show the accuracy reduction (compared to the
detection-only branch) as we increase the sampling interval of the
object detection kernel. For the detection kernel, we choose 100-
proposal, 576-shape branch. The results show that the accuracy of
high si branches (si = 100) does not drop significantly (≈ 10%) on
slow moving videos but reduces (> 30%) on fast moving videos.

4.3 Latency Modeling
Latency prediction models aim to predict the frame-wise latency
of each AB for future frames. Denote Lf r as the per-frame latency
of our adaptive object detection framework. Lf r is a function of
the DNN based detection latency LDNN and the tracking latency
Ltracker . If object detection DNN runs every si frames (sampling
interval), the latency Lf r is given by

Lf r =
LDNN

si
+ Ltracker , (1)

We now describe the models of the detection latency LDNN and
the tracking latency Ltracker , respectively.

4.3.1 Latency Prediction for Object Detection DNN. The latency of
the object detection DNN LDNN is jointly determined by the two
detector tuning knobs – the input image size shape and the number
of proposalsnprop. Moreover, considering the input shape of frames
may vary in different videos, we add the heiдht and width of the
input image as additional features. These features could be ignored
if the video source is a video camera (which outputs fixed sized
frames). Besides the input shape of video frames, system contention
(CPU/GPU usage and memory bandwidth, as detailed in Section 4.5)
will also affect the DNN latency. Thus, the latency equation of the
DNN is given by

LDNN = fDNN (nprop, shape, heiдht, width, contention). (2)

We fit a quadratic regression model for fDNN to characterize the
latency of the detection DNN. Once trained, the regression model
is evaluated on a subset of the test set (sparsely sampled), where
the mean squared error (MSE) between the prediction L̂DNN and
the ground-truth LDNN latency are reported.



SenSys ’20, November 16–19, 2020, Virtual Event, Japan Xu et al.

Figure 4: The latency curve of object
trackers with different numbers of
the objects on the validation dataset.

Figure 5: The latency curve of object
trackers with different sizes of the ob-
jects on the validation dataset.

Figure 6: Detection plus Median-
Flow tracker vis-à-vis detection-only
branch on slow/medium/fast subsets.

4.3.2 Latency Prediction for Object Trackers. As discussed in Sec-
tion 4.2.1, the number of objects and average sizes of objects play a
major role for the tracking latency. We further construct a model
ftracker to characterize the latency of the object tracker under the
system contention. Similar to the detection latency model, we also
add the heiдht andwidth of the input image as additional features.
Thus, ftracker is given by:

Ltracker = ftracker (heiдht, width, n_ob j, avд_size, contention)
(3)

We fit quadratic regression models to the ground-truth Ltracker .
Moreover, since the model depends on n_obj and avд_size of the
previous frame, we use the previous frame’s n_obj and avд_size to
train Ltracker . After the training process, we compute the predicted
L̂tracker and measure the MSE across a subset of the test set.

4.4 Accuracy Modeling
Accuracy prediction models aim to predict the expectation of the
accuracy of each AB for near future frames. The accuracy of an
object detector is usually defined by the metric mean average pre-
cision (mAP). However, we find that predicting the absolute mAPs
given a test video is difficult. To address this issue, we propose to
convert the absolute mAP metric into a relative percentage metric.
More precisely, a base branch is identified in the detection frame-
work using the detection-only branch (si = 1) with nprop = 100
and shape = 576. This base branch sets the performance upper-
bound for all approximation branches (62.3% mAP on the validation
set). The mAP of each AB is normalized to its percentage value by
dividing its mAP by the base branch’s mAP.

Different from the latency models, the factors on the accuracy
are coupled all together (i.e., no distinction between detection DNN
and tracking). Thus, we have a single unified model, given by:

A = fA (si, shape, nprop, tracker, ds,movement ) (4)

where tracker is the tracker type, ds is the downsampling ratio
of the input to the tracker, andmovement is the object movement
features extracted from the video content. A decision tree model fA
was learned to predict the accuracy A, trained with the MSE loss
across the whole training dataset.

Table 2: Applications running in the 3D contention space.
Real Apps CPU MB (MB/s) GPU
Anomaly detection 99.80% 500 0%
Faster R-CNN 69.75% 1000 99%
YOLOv3 65.85% 800 98.50%

Table 3: Cost of profiling.
Task Cost
Framework accuracy 2,414 hr · core (20% of the configurations)
Detection latency 7 hr · machine w/ 15 out 1 million sampling
Tracker latency 1 hr ·machine w/ 169 out 1 million sampling

4.5 Synthetic Contention Generator
Synthetic Contention Generator (CG) is designed as a stand-in for
any resource contention on the device that may affect ApproxDet.
A detection framework may suffer from unpredictable levels of
resource contention when it is running on mobile platforms due
to the instantiation of other co-located applications, for which we
will not have information. We focus on three important types of re-
sources on mobile platforms — CPU, memory bandwidth (MB), and
GPU. We control CPU contention by the number of CPU cores our
CG occupies. We control MB contention by the amount of memory-
to-cache bandwidth that it consumes. The code is modified from the
widely used STREAM benchmark [54, 55] that is meant to measure
the MB capacity of a chip. For the GPU contention, we control the
number of GPU cores that are utilized. The three-dimensional CG
is orthogonal, which means we can tune each dimension without
affecting the other dimensions. The CG is representative because
we executed and mapped the contention caused by some widely-
used applications in the 3D contention space (Table 2). The first
one is an anomaly detection program that uses Robust Random Cut
Forest (RRCF) [24] to detect anomalies from a local temperature
and humidity sensor data. We also used our two object detection
DNNs, namely Faster R-CNN and YOLOv3, for checking how much
contention they can generate.

4.6 Profiling Cost and Sub-sampling
The cost of collecting ground truth data with design features for
performance prediction models is significant without proper sam-
pling techniques. We measure our profiling cost for the accuracy,
detection latency, and tracker latency models in Table 3.



ApproxDet: Content and Contention-Aware Approximate Object Detection for Mobiles SenSys ’20, November 16–19, 2020, Virtual Event, Japan

To efficiently collect the profiling data, we use the master and
worker model, where the master node manages a list of configura-
tions of the detection framework and distributes the profiling work,
while workers run the particular configuration to collect the train-
ing data for the modeling. As the feature space is huge, we sparsely
sample the multi-dimensional space of (“number of proposals”, “re-
sized shape”, “sampling interval”, “tracker”, “down-sampling ratio
of the tracker’). We finally use 20% of the configurations to train
our accuracy model.

Similar sub-subsampling techniques are used for the latency
models as well, and we sample data points on videos of various
height andwidth, various numbers of objects and object sizes, under
discrete 3D contention levels. We finally use 15 out of a million
feature points (defined in Section 5.2 and 5.1) to train our detection
latency model and 169 out of a million feature points to train our
tracker latency model.

4.7 Scheduler
The scheduler is the core component of ApproxDet that makes the
decision at runtime onwhich AB should be used to run the inference
on the input video frames. Formally, the scheduler maximizes the
estimated detection accuracy of ApproxDet given a latency require-
ment Lr eq . This is done by identifying a feasible set of branches
that satisfy the target latency requirements, and choosing the most
accurate branch. In case of an empty feasible set, the fastest branch
is returned. Thus, we formulate the optimal AB bopt as follows,

bopt =



argmaxb∈B̂ (Ab ), if B̂ , ∅,
argminb∈B̂ (Lest,b ) otherwise

(5)

where B̂ is all ABs considered, B̂ is the feasible set, i.e., B̂ = {b ∈
B̂} iff Lest,b < Lr eq ,Ab and Lest,b are the estimated accuracy and
latency of the AB respectively. The search space B̂, composed of five
orthogonal knobs, has millions of states. To reduce the scheduler
overhead, we use a sampling technique in Section 5.1 and design
light-weight online feature extractors.

To further reduce the scheduler overhead and enhance our sys-
tem robustness, we restrict the scheduler to make decision at least
every sw frames. The motivation of introducing sw is to prevent
the scheduler to make very frequent decisions. Specifically, we set
sw =max (8, si ). The scheduler will thus make a decision at least
every 8 frames. When the scheduler chooses a branch with a long
si , it will make a following decision every si frames. In addition to
the latency of the detection and tracking kernels, we add switching
overhead Lsw and the scheduler overhead Lsc into the overall la-
tency estimation of an AB b, i.e., Lest,b = Lb,f r + (Lsw + Lsc )/sw .
We also design the light-weight online feature extractors so that
we can adapt seamlessly to the content and contention changes.
Online Content feature Extractor. The online content feature
extractor maintains the content features of the video by extracting
heiдht ,width from current frame, memorizing n_obj, avд_size of
last frame and movement from past frames. It is lightweight in
terms of the compute load it puts on the target platform and this is
desirable since we have to extract the features at runtime on the
target board for feeding into our models.
Online Contention Sensor. The online contention sensor is de-
signed to sense the contention level in the system so that we can

refer to the modeling and make the right prediction on the latency
of each AB. Although one can theoretically get the ground truth of
the resource contention by probing the system and directly measur-
ing CPU, memory bandwidth and GPU usage by other processes,
it is not practical. As a normal application in the user space, it is
difficult for ApproxDet to collect the exact resource information
from other processes. The hardware is also lacking sufficient sup-
port for such fine-grained measurement on mobile or embedded
devices [70]. In contrast, the offline latency log under various con-
tention levels and the online latency log of the current branch in
the past few runs are a natural observation of the contention level.
Thus, we proposed the log-based contention sensor.

The log-based contention sensor tries to find a contention level
where the offline latency log matches the averaged online latency
most closely. We use the nearest-neighbor principle to search for
such contention levels in our pre-defined orthogonal 3D contention
space. As multiple contention levels may cause the same impact
on the latency of a given AB, we call it a cluster of contention
levels and we pick one level out of it as the representative. In
comparison to some previous work in the systems community [18],
our contention sensor is lightweight, efficient, and does not require
additional privileges at system level, making it a more practical
offering in real-world systems.

5 IMPLEMENTATION
We implement ApproxDet in Python 3 and C with tensorflow-gpu,
CUDA, and cuDNN libraries. For detection kernel, we choose Faster
R-CNN due to its high accuracy and moderate computational bur-
den. For tracking kernel, we implement four variants and introduce
the details in Section 5.1.

5.1 Configuration of the Tuning Knobs
Our five tuning knobs include the sampling interval (si), the input
image size (shape) to the detection DNN, the number of proposals
(nprop) in the detection DNN, the type of object tracker (tracker )
and the downsampling ratio of the input to the tracker (ds). We
now describe the implementation details of these knobs, including
their data types and value ranges.
Sampling Interval (si). si defines the interval of running the object
detector. The object tracker runs on the following si − 1 frames.
For example, our system runs object detection on every frame
when si = 1. To reduce the search space of si , we constrain si in a
preset set—{1, 2, 4, 8, 20, 50, 100}. These pre-defined si are chosen
empirically to cover common video object detection scenarios. With
the max value of si = 100, the detector runs at a large interval of
3-4 seconds and the tracker runs in-between.
Input Video Frame Shape to Detector (shape). shape defines
the shortest side of the input video frame to the object detector.
The value of shape must be a multiple of 16 to make the precise
alignment of the image pixels and the feature map [62]. We set
the shape range from 224 to 576, since smaller shape than 224
significantly reduces the accuracy and larger shape than 576 will
result in heavy computational burden and does not improve the
accuracy based on results on the validation set.
Number of Proposals (nprop). nprop controls the number of can-
didate regions considered for classification in the object detector.



SenSys ’20, November 16–19, 2020, Virtual Event, Japan Xu et al.

We limit the value of nprop (integer) between 1 and 100. With
nprop = 1, only the top ranked proposal from RPN is used for
detection. Increasing nprop will boost the detector’s performance
yet with increased computational cost and runtime.
Type of Trackers (tracker ). tracker defines which tracker to use
from MedianFlow [38], KCF [27], CSRT [47], and dense optical flow
trackers [19]. These trackers are selected based on their efficiency
and accuracy. Different trackers have varying performance under
different scenarios. For example, CSRT tracker is most accurate
among these trackers, but is also most time consuming. MedianFlow
tracker is fast and accurate when a object move slowly in the video,
yet have poor performance for a fast moving object. We use the
implementation from OpenCV for all trackers.
Downsampling Ratio for the Tracker (ds). ds controls the input
image size to the tracker. The value of ds is limited to 1, 2, and 4, i.e.,
no downsampling, dowsampling by a factor of 2 and 4, respectively.
A larger ds reduces the computational cost, and favors the tracking
of fast moving objects. A smallerds increase the latency, yet provide
more accurate tracking of slowly moving objects.

5.2 3D Contention Generator (CG)
Our 3D CG is lightweight in code size. It is configured to generate
contention in CPU, memory bandwidth (MB), and GPU (as intro-
duced in Section 4.5). For MB CG, we modify STREAM by having
the code write continuously to a 152 MB memory space and con-
trolling the interval of array elements to operate on the array data
so as to control the MB occupied. We add a feedback loop to dy-
namically adjust the number of elements in the array to be skipped
for the write operation, thus maintaining the MB contention at the
experimentally given level. To increase the maximum contention
that can be generated by the MB CG, we spread out the MB CG
among the CPU cores on which contention is to be generated and
in aggregate can generate an intense bandwidth contention of up to
18 GB/s when 6 CPU can be used. The maximum input for the MB
CG depends on both the CPU and MB part, the more CPU we can
occupy, the higher maximum MB contention we can achieve. For
the GPU CG, we fixed the working frequency of TX2 board at 1300
MHz. Then our GPU CG performs add operation on a certain size
of arrays by using a CUDA program. By changing the size of the
arrays and the input to the CUDA kernel functions, we control the
number of GPU cores that are kept busy. We generate contention
from 1% to 99%, as measured by tegrastats. For the experiments,
we use 11 discrete levels 1%, 99%, and 9 levels in increments of
10% starting at 10%. If there is no MB or GPU contention specified
and we need CPU contention on a certain number of CPU cores,
we use a MB CG with minimum input 1MB/s to serve as the CPU
CG and pin it to the experimentally given number of cores. For
the experiments, we use 6 discrete levels from 100% to 600% in
increments of 100%.

5.3 Training of Latency and Accuracy Models
The latency and accuracy model in ApproxDet is trained using
a subset of the validation set of ImageNet VID. Specifically, we
sparsely sample the 5-D feature space (si, shape,nprop, tracker ,ds )
and run ApproxDet using the sampled configuration on a subset of
videos randomly sampled from the validation set. Standard gradient

descent is then used for fitting the regression. And CART is used for
the decision tree. To train content-aware accuracymodel, during the
training phase, themovement feature as the average motion across
all objects and all frames is required in each video snippet. During
the test phase, since movement of the objects are not available, we
use average across all past frames as a substitute.

6 EVALUATION
6.1 Evaluation Platform
We evaluate ApproxDet on anNVIDIA Jetson TX2 board [11], which
includes 256 NVIDIA Pascal CUDA cores, a dual-core Denver CPU,
a quad-core ARM CPU on a 8GB unified memory between CPU and
GPU. The specification of this board is comparable to what is avail-
able in today’s high-end smartphones such as Samsung Galaxy S20
and Apple iPhone 11 Pro. We train our neural network models on a
server with NVIDIA Tesla K40c GPU with 12GB dedicated memory
and an octa-core Intel i7-2600 CPU with 24GB RAM. For both the
TX2 and the edge server, we install Ubuntu OS and Tensorflow
v1.14, Pytorch v1.1, and MXNet v1.4.1.

6.2 Datasets, Task, and Metrics
We evaluate ApproxDet on the object detection task using ILSVRC
2015 VID dataset [63]. For training, due to the redundant video
dataset and limited resources, we follow the practice in [39] such
that the VID training dataset is sub-sampled every 100 frames.
We use 90% of this video dataset as training set to train Approx-
Det’s DNN model and keep aside another 10% as validation set to
fine-tune ApproxDet (modeling). To evaluate ApproxDet’s system
performance, we use ILSVRC 2015 VID validation set – we refer
to this as the “test set” throughout the paper. Due to the limit of
time and computational resources, we use 10% of test set. For all
our baselines, we follow the data split of ApproxDet’s DNN model
to train and test.

We use latency and mean average precision (mAP) as the two
metrics. We define the latency as the short-window averaged la-
tency among one detection frame and its following tracking frames.
The definition applies to ApproxDet’s baselines using different
trackers. The latency also includes the overheads of the respec-
tive solutions, e.g., the switching overhead, the execution time of
the online feature extractor, the online contention sensor, and the
scheduler. Detection DNNs usually use a low confidence threshold,
e.g., 0.001 [46, 62] to achieve higher mAP. However, low confidence
threshold will lead to many false positive outputs, which is not
practical in real-world systems. To simulate the environment of
real-world systems, we use a high confidence threshold (0.3) to
reduce the number of output objects from detection DNNs, and
make it the same for all baseline detection DNNs. Note that we
always use the ground truth annotations available in the datatset to
examine the true accuracy and never use other detection results as
pseudo ground truth (as in [30]).

6.3 Baselines
In this section, we will introduce baseline models used in our paper.
Faster R-CNN (FRCNN) [62] is a popular two-stage detector in
the computer vision community. In this paper, we vary the nprop
and shape of ApproxDet’s detection DNN to create different FRCNN



ApproxDet: Content and Contention-Aware Approximate Object Detection for Mobiles SenSys ’20, November 16–19, 2020, Virtual Event, Japan

Figure 7: Accuracy of the
models vs 95-th latency SLA.
G50 represents the 50% GPU
contention and G0 denotes
no contention. (zoomed in)

Figure 8: Accuracy of the
models vs 95-th latency SLA.
G50 represents the 50% GPU
contention and G0 denotes
no contention. (zoomed out)

baseline detectors. From this, we get a total of 28 (4shape × 7nprop)
FRCNN baseline models. In these baseline models, we follow the
multi-model design on the detection model, where model variants
in different sizes (number of proposals and resized shape) achieve
different latency and accuracy specifications. We also profile the
latency of these model variants and evaluate FRCNN with our
scheduler defined in Section 4.7.
FRCNN+MedianFlow (FRCNN+MF): Since FRCNN only uses de-
tection, we want to enhance this baseline for a fair comparison. For
the enhanced baseline, we follow the mainstream “detection plus
tracking” design in lightweight object detection tasks. We pick an
unmodified detection variant with the highest accuracy (nprop =
100, shape = 576) and a fast object tracker—MedianFlow (without
downsampling technique). Thus, the enhanced baseline models
include FRCNN plus MedianFlow tracker with varying si . We also
profile the latency of these model variants (each si) and evaluate
FRCNN+MF with our scheduler defined in Section 4.7. To reduce
the scheduler cost, we perform the same sampling strategy in Sec-
tion 5.1. Though we can pick different models based on the latency
budget, these models are static and cannot respond to contention
and context changes.
AdaScale: Among latest methods, we choose AdaScale [9] as it dy-
namically adjusts the input scale to improve accuracy and running
speed simultaneously. AdaScale is thus most relevant to our work,
with similar tuning knobs for resource-constrained devices. For
conducting a fair comparison between AdaScale and our proposed
ApproxDet, we both use the pretrained models on ImageNet and
train on the same ImageNet VID dataset.
YOLOv3: YOLOv3 is a modern one-stage detector with a fast run-
ning speed. It is widely used in many mobile applications. In this
paper, we use the same training/testing set and scheduler as Ap-
proxDet to train and evaluate YOLOv3.

6.4 End-to-End Evaluation on Budgeted
Latency

We first examine the end-to-end performance of ApproxDet vs.
various baselines. Figure 7 shows a micro-view of the accuracy and
95-th percentile latency 3 under no contention (G0) and injected 50%

3We choose the 95-th percentile latency service level agreement (SLA) because it is a
promise to the users that in most cases the latency is below the number and shows
much stronger latency guarantee than either mean or median latency.

Figure 9: Accuracy (mAP)
vs. latency requirement. FR-
CNN can not fulfill latency
SLA < 300 ms. The accuracy
of the baseline (FRCNN+MF)
remains the same for G0 and
G50, as it cannot adapt to
contention and the execu-
tion is the same.

Figure 10: Latency violation
rate vs. latency requirement.
The baseline FRCNN+MF
has significantly higher
violation rates with in-
creased contention levels,
even when using a very
conservative P95 scheduler.

GPU contention (G50) from the CG. The reason why our evaluation
injects GPU contention only, is that the inference time of the DNN
has the most impact on the detection latency and such inferences
mostly run on the device’s GPU (when it is available). Hence, the
impact of GPU contention would focus on the most interesting sce-
narios showing how resilient ApproxDet is with respect to changes
in the dynamics within the mobile device.

The results show the superior accuracy-vs-latency trade-off (blue
vs. green vs. purple) over a FRCNN+MF and YOLOv3 under no
contention where particularly, ApproxDet’s accuracy is 11.8%, 9.5%
higher than FRCNN+MF given 80ms and 90ms latency SLA and
also 9.1% higher than YOLOv3 given 170ms latency SLA (exactly
following YOLOv3’s posterior 95-th latency). The accuracy gain
over FRCNN+MF reduces as latency SLA grows larger since both
ApproxDet and FRCNN+MF will merge into detection-only (or
detection in every alternate frame) branch.

Furthermore, when 50% GPU contention is injected, ApproxDet
with strong adaptability on sensing and reacting to the contention,
the accuracy drops by around 2% and preserves the 95th latency
SLA with minor changes (max 16%). However, the best baseline
FRCNN+MF cannot adapt to the contention and the latency in-
creases significantly (25% - 50%). Figure 8 shows the performance of
FRCNN and AdaScale. Both of their latency increase by 75% to 120%
with increased contention levels. This is significantly worse than
ApproxDet. Further, FRCNN is inferior to FRCNN+MF in terms of
accuracy-latency tradeoff. This is because adding the light-weight
MedianFlow tracker largely reduces the latency while preserving
most of the accuracy.

Although accuracy vs latency SLA shows the posterior perfor-
mance metric of each model, we also want to examine under a
certain latency requirement, how each solution chooses a model
variant to execute and what the accuracy (Figure 9) and the la-
tency violation rates (Figure 10) are. We evaluate at 80ms, 100ms,
150ms, and 300ms. Latency requirement that is smaller than 80ms
is not chosen because no branch will be returned from both base-
lines and larger latency requirement is not meaningful as discussed
before. Figure 9 and 10 show that under no contention scenario
(GO), ApproxDet and FRCNN+MF are equally good at controlling
low latency violations (ApproxDet is slightly smaller), while the



SenSys ’20, November 16–19, 2020, Virtual Event, Japan Xu et al.

accuracy of ApproxDet is 11.8%, 8.5%, 3.0%, and 1.1% higher than FR-
CNN+MF. Even under great reduction to 80ms latency requirement,
ApproxDet is still able to maintain the accuracy above 50%.

Then, as 50% GPU contention is injected, the accuracy of Approx-
Det is slightly reduced (by 2%) and is as good as FRCNN+MF under
150ms and 300ms latency requirements. However, ApproxDet is
still able to control within the 5% violation rate while FRCNN+MF
has a violation rate of 18.3%, 8.0%, 9.5%, and 100%. To summarize,
ApproxDet is best at reducing the latency requirement to as low
as 80ms with slightly reduced accuracy and is able to adapt well to
the contention without violating the latency requirements.

6.5 Case Studies on Changing Conditions
Although the macro benchmark shows the overall performance of
ApproxDet on a whole dataset, it is mostly the static behavior of the
models since the latency requirement and resource contention levels
do not change. To examine how ApproxDet adapts to the runtime
changing conditions, we set up these case studies by injecting
changing contention levels and latency requirements.
Changing Contention Levels. We first examine the performance
of ApproxDet given a fixed latency requirement of 100 milliseconds
on one test video. We then manually inject the GPU contention
through CG and gradually tune up the contention level by 20%
for every 200 frames. Figure 11 shows that ApproxDet with quick
sensing and adaptation, is always able to meet the latency require-
ments while a FRCNN+MF baseline will either exceed the latency
requirement by 20% (si = 20) or stay too conservative (si = 50) and
suffers from low accuracy (there is a 7% mAP difference between
the two branches on the test dataset).

In addition, we also pick a real application—Gaussian Elimina-
tion from the Rodinia Benchmark Suite [7], a GPU-intensive linear
algebra routine widely used by many applications. We examine
the performance of ApproxDet and baselines without and with the
background app. Figure 12 shows that ApproxDet can adapt to the
resource contention produced by the background app. The latency
goes up dramatically when the app starts running and quickly drops
as ApproxDet senses such contention and schedule a more efficient
AB. A repeated experiment during the 600—800 frames has further
confirmed our adaptability. In contrast, the baseline FRCNN+MF
with different si is either too conservative or too aggressive under
varying contention levels in terms of latency. When the contention
app starts running, there is a larger latency spike of ApproxDet
than FRCNN+MF. This is because our system schedules the ABwith
smaller si as long as the latency of such AB is below the latency
requirement. However, since the object detector takes a larger por-
tion in latency and is more sensitive to GPU contention, the latency
increase is much higher when the system has not responded yet.
Changing Latency Requirements. We then examine the perfor-
mance of ApproxDet given more relaxed latency requirements of
80ms, 100ms, 150ms, and 300ms per frame in four equally chunked
phases of 200 frames. Figure 13 shows that we can always keep up
with the latency requirement and always run below the latency
requirement while FRCNN+MF, although is choosing a branch that
satisfy 95% of the video frames in the validation dataset, still vio-
lates the latency requirement by 20% under 80ms requirement and
is slightly above the threshold given 100ms latency requirement.

Table 4: Precision of the tracker latency prediction models
on the validation dataset. Please note that we only show
the results of tracking frames on test datasets. In this ta-
ble, “no” means no contention, “g50” means 50% GPU con-
tention, and “c6m3600” means contention with 6 CPU cores
and 3600 memory bandwidth. RMSE means root squared
mean squared error. We use “our model/baseline” formats
to show the result.

RMSE (no) RMSE (g50) RMSE (c6m3600)
Medianflow_ds1 11.98/17.86 6.37/19.83 14.81/44.41
Medianflow_ds2 6.80/12.37 3.14/12.90 9.91/26.96
Medianflow_ds4 7.32/12.30 3.72/12.43 11.14/26.18
KCF_ds4 32.23/41.24 23.81/43.38 41.46/81.37
CSRT_ds4 46.66/92.54 44.17/102.98 78.97/179.77
Dense_ds4 14.15/24.45 6.45/26.32 11.75/53.26

Table 5: Latency (as percentage of total latency) of different
parts in ApproxDet system, measured with zero contention.

User re-
quirement

Scheduler
overhead (%)

Detection
latency (%)

Tracking
latency (%)

80ms 0.82% 59.65% 39.53%
100ms 0.62% 66.63% 32.75%
150ms 0.52% 69.10% 30.38%

6.6 Performance Prediction Models
Accuracy Prediction Model. We set up the oracle method as
using the ground truth validation data to predict on the test dataset.
According to our belief that the accuracy reduction should be same
in validation dataset and test dataset, the oracle approach should
achieve zero MSE and if it is not zero, it represents the gap of
accuracy reduction between the two datasets.

Figure 14 shows the training curve of the accuracy prediction
model. We use different amounts of data to train the model and
examine the mean squared error (MSE) on the rest of validation
dataset for cross validation and the whole test dataset to report
final performance. We can see that with only 20% of the training
data, we are able to predict on the test dataset with 74.58 MSE. We
can further reduce the MSE to 71.67 if 95% of the training data is
available, while the oracle predicts with a comparable 71.65 MSE.
Tracker Latency Prediction Model. We set up the baseline ap-
proach, which always predicts a constant latency for each tracker
using the averaged latency across all frames under specific con-
tention levels. As seen from Table 4, we can largely reduce the
prediction root MSE on the test dataset. Some trackers return high
prediction RMSE (CSRT for example). The reason is some trackers
may have unstable latency under high contention levels. We leave
further exploration of this as our future work.

6.7 Overhead: Switching, Scheduler, and Online
Components

Figure 15 shows a heatmap of the switching latency from any
approximation branch of the detection framework to another, es-
pecially inside the detection DNN. This is an average of 10 such
switches. The switching latency is defined as the difference of the
execution time of the first frame in the new branches over that of
following frames. We can find that switching latency is bounded
by 12 ms.



ApproxDet: Content and Contention-Aware Approximate Object Detection for Mobiles SenSys ’20, November 16–19, 2020, Virtual Event, Japan

Figure 11: Comparison of models’ la-
tency under changing contention.

Figure 12: Comparison of models’ la-
tency without and with real app.

Figure 13: Comparison of models’ la-
tency under changing latency budget.

Figure 14: MSE of the accuracy prediction model on the val-
idation set, with varying amount of training data.

Figure 15: Heatmap of switching latency among ABs with
varying “numbers of proposals” and “input shapes”.

The scheduler overhead comes from the accuracy and latency
prediction models, as well as the contention sensor. Generally, the
overhead of the scheduler is 11.09 ms per execution. Since we will
only execute the scheduler once during all si frames, the average
overhead of the scheduler is under 1 ms in most cases. This is
supported by the profiling results in Table 5. The overhead of the
scheduler occupies less than 1% of the total latency, suggesting that
our scheduler is sufficiently fast for an online system.

7 DISCUSSION AND FUTUREWORK
Relation to the OS and Standing on the Contention. Approx-
Det is positioned as a user-level application and does not change the
OS’s orchestration. Thus, we design ApproxDet to treat contention
in a black-box manner. The advantage of such standing makes Ap-
proxDet easier to implement, free from the OS restrictions, and
reduce the complexity of contention scenarios by observing the
impact of contention on ApproxDet’s latency. However due to the
black-boxmethod, ApproxDet has the limitation of not knowing the
exact contention details to adapt accordingly. Different contention
scenarios may have the same impact on ApproxDet’s latency and
however ApproxDet will not be able to differentiate them, lead-
ing to potential sub-optimal adaptation. Future work may add OS
privilege, observe the true contention levels from the OS, and even
control the contention as well. The marginal benefit over the cost
and lost features is yet to be revealed.
Contention Scenarios.We evaluate ApproxDet mainly with GPU
contention from the synthetic CG because the object detector
mainly runs on the GPU and the detection latency is much higher
than the tracker latency. ApproxDet has the limitation on the con-
tention source and scenarios, though we also include a case study
with a real App. Future work may evaluate with various mobile
background workloads from the real trace data and study the prop-
agation effect of ApproxDet to the OS or other Apps.
Generalize toOtherDetectionMethods.Our adaptive detection
framework allows any architectures of detection DNNs beyond
FRCNN as long as we can expose the tuning knobs from them. The
choice of the detection method can be another approximate knob.
Features of Performance PredictionModels. In ApproxDet, we
consider the content features motivated by Figure 4, 5 and 6 with
clear individual impact. We have considered the low-level content
feature like the edges in the video frame but it does not have clear
impact and thus has been excluded. More features can be introduced
to improve the accuracy and latency prediction models, like object
type, shape deformation, context, etc.
Reinforcement Learning (RL) for the Scheduler.RL basedmod-
els can be an alternative method for implementing the scheduler.
RL models learn to make schedule decisions based on training data
and can potentially outperform the rule based policies.
Using Neural Networks to Infer Configurations. We leverage
the sampling techniques to reduce the searching cost of config-
urations. Neural networks can be used to improve the searching
efficiency if we disable the sampling and allowmore flexible choices.



SenSys ’20, November 16–19, 2020, Virtual Event, Japan Xu et al.

Evaluation Dataset and Devices. We plan to further evaluate
ApproxDet on data-sets with high resolution videos (e.g., 1080p
and 2K videos) and other mobile platforms.

8 RELATEDWORK
Object Detection. Object detection is a well established topic in
computer vision and has made recent progress, thanks to DNNs.
DNN-based object detectors can be summarized into two categories:
single-stage detectors, such as YOLO series [60, 61], SSD [46], Reti-
naNet [43], and two-stage detectors, such as Faster-RCNN [62],
R-FCN [12], Cascade R-CNN [66]. Single-stage detectors classify a
dense set of grids, while two-stage detectors focus on a sparse set of
region proposals oftentimes producing a separate region proposal
network (RPN). Two-stage detectors are usually more accurate with
reduced efficiency. While these detectors operate on single images,
several recent works seek to extend them to the task of video object
detection [20, 39, 83, 84]. A key idea behind these methods is to
explore the temporal continuity of videos, where motion tracking
is used to enhance the video object detection performance. We used
this similar idea for our system, ApproxDet.
Efficient DNNs for Mobile Applications There is an emerging
interest to develop efficient DNNs for mobile vision applications.
An important line of research is to identify lightweight network
architectures with low computational cost. Examples include man-
ually designed MobileNet family [29, 64], SqueezeNet [35], and
ShuffleNet [81], as well as the more recent MNasNet [67], Mo-
bileNetV3 [28], FBNet [74], and EfficientNet [68] produced by neu-
ral architecture search [17]. Other techniques include the removal of
redundant parameters (network pruning) [25, 31, 42, 48], the quan-
tization of parameters (network quantization) [33, 34, 59]. While
these architectures and techniques are primarily designed for image
classification, they can be used as a building block for efficient object
detectors [69, 73]. In spite of the efficiency, none of these approaches
can adapt to contention and content during runtime.
Adaptive Inference for DNNs The early work on anytime pre-
diction [86] presents the first set of methods that are adaptive to a
computing budget at runtime. This idea was recently revisited in
the computer vision community using DNNs. For example, at infer-
ence time, a DNN can choose to drop certain operations [72, 75], or
to select one of the many exits [32, 79] or branches [71], based on
the image content or a given latency budget. Unfortunately, none
of these approaches is designed for object detection. Besides, they
do not consider the modeling of resource contention. In parallel to
these developments, several recent work in the systems commu-
nity also seek to build adaptive inference systems for DNNs. For
example, NestDNN [18] uses network pruning to convert a static
DNN into multiple DNNs, and dynamically selects from these to
fit the resource requirement for image classification. AdaScale [9]
learns to adaptively change the input shape of an object detection
DNN, in order to achieve a latency-accuracy tradeoff. In compar-
ison to NestDNN, our system ApproxDet uses a single adaptive
DNN model for object detection. The use of ensemble models can
be resource intensive [22] and is thus not suitable for many devices
in our target class. In contrast to AdaScale, ApproxDet considers a
joint adaptation of video content and resource contention.

Approximate Video Analytics. Our work shares similar ideas
to several recent works in video analytics in the systems com-
munity. For example, server-side solutions like VideoStorm [80],
Chameleon [37], and Focus [30] exploit various configurations and
DNN models to optimize video analytics queries, but they also
require loading of multiple models at the same time, which are
challenging in resource-constrained mobile devices. If memory con-
straints prevent multiple models being co-resident on a device, it is
conceivable to send them over the network on demand, using effi-
cient wireless reprogramming [58], but the times involved are such
that the prediction of which model will be required will have to be
done far in advance. Liu et al. [45] explore the offloading of object
detection to an edge device in combinationwith fast on-device track-
ing for mobile AR. ExCamera [21] enables low-latency video pro-
cessing on the cloud using serverless architecture. VideoChef [76]
uses approximation knobs of traditional video preprocessing filters
in a content-aware manner. It cannot handle object detection and
is not applicable to DNN-based video processing. A recent work in
this space called MARLIN [2] shows that for AR applications, in-
stead of continuously running the detection DNN, they can decide
when to run their specially designed lightweight trackers. We take
the idea of running the tracker at a configurable interval si , but we
use traditional trackers.

9 CONCLUSION
Here, we present ApproxDet, a single model adaptive system for
video object detection in a video content-aware and contention-
aware fashion, focusing on resource-constrained mobile/embedded
devices. Case studies have shown that ApproxDet can adjust to
different scenarios with best accuracy and least latency over pre-
vious models. Further, we contrast ApproxDet with multiple base-
lines, including AdaScale, a content-aware adaptive server-based
video object detection system, and YOLOv3, a single-stage objec-
tion system, with high benchmarked efficiency on the ImageNet
VID dataset. We find that ApproxDet is 52.9% lower latency and
11.1% higher accuracy over YOLOv3, outperforms all baselines,
and has significantly lower switching overhead due to its single
model design. Results on ImageNet VID dataset demonstrates the
efficiency and effectiveness of ApproxDet, highlighting its promise
in enabling latency-sensitive applications, pushing the frontiers
of ever-evolving AR/MR (augmented/mixed reality) experiences,
instantiated on embedded platforms.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd for their
valuable comments to improve the quality of this paper. This mate-
rial is based in part upon work supported by the National Science
Foundation under Grant Number CNS-1527262, Army Research Lab
under Contract number W911NF-20-2-0026, the Lilly Endowment
(Wabash Heartland Innovation Network), and gift funding from
Adobe Research. Yin Li acknowledges the support by the Univer-
sity of Wisconsin VCRGE with funding from WARF. Work done by
Chen-lin Zhang was when he was visiting University of Wisconsin
at Madison. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of the sponsors.



ApproxDet: Content and Contention-Aware Approximate Object Detection for Mobiles SenSys ’20, November 16–19, 2020, Virtual Event, Japan

REFERENCES
[1] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman, and

Saman Amarasinghe. 2011. Language and compiler support for auto-tuning
variable-accuracy algorithms. In International Symposium on Code Generation
and Optimization (CGO 2011). IEEE, 85–96.

[2] Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen, Srikanth V Krishnamurthy, and
Amit K Roy-Chowdhury. 2019. Frugal following: Power thrifty object detection
and tracking for mobile augmented reality. In Proceedings of the Conference on
Embedded Networked Sensor Systems (SenSys). 96–109.

[3] Saurabh Bagchi, Vaneet Aggarwal, Somali Chaterji, Fred Douglis, Aly El Gamal,
Jiawei Han, Brian J Henz, Henry Hoffmann, Suman Jana, Milind Kulkarni, et al.
2020. Vision Paper: Grand Challenges in Resilience: Autonomous System Re-
silience through Design and Runtime Measures. IEEE Open Journal of the Com-
puter Society 1 (2020), 155–172.

[4] Ross Bulat. 2020. React Native: Background Task Management in
iOS. https://medium.com/@rossbulat/react-native-background-task-
management-in-ios-d0f05ae53cc5

[5] Somali Chaterji, Nathan DeLay, John Evans, Nathan Mosier, Bernard Engel,
Dennis Buckmaster, and Ranveer Chandra. 2020. Artificial Intelligence for Dig-
ital Agriculture at Scale: Techniques, Policies, and Challenges. arXiv preprint
arXiv:2001.09786 (2020).

[6] Somali Chaterji, ParinazNaghizadeh,MuhammadAshraful Alam, Saurabh Bagchi,
Mung Chiang, David Corman, Brian Henz, Suman Jana, Na Li, Shaoshuai Mou,
et al. 2019. Resilient Cyberphysical Systems and their Application Drivers: A
Technology Roadmap. arXiv preprint arXiv:2001.00090 (2019).

[7] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE International Symposium on Workload Characterization
(IISWC). Ieee, 44–54.

[8] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. 2015. Glimpse: Continuous, real-time object recognition on mobile
devices. In Proceedings of the ACM Conference on Embedded Networked Sensor
Systems (SenSys). 155–168.

[9] Ting-Wu Chin, Ruizhou Ding, and Diana Marculescu. 2019. AdaScale: Towards
real-time video object detection using adaptive scaling. In Proceedings of the
Conference on Machine Learning and Systems (SysML).

[10] The Pokemon Company. 2020. PokÃľmon GO | Augmented Reality Mobile Game.
https://pokemongolive.com/en/

[11] NVIDIA Corporation. 2018. Jetson TX2 Module. Retrieved May 5, 2020 from
https://developer.nvidia.com/embedded/buy/jetson-tx2

[12] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. 2016. R-FCN: Object detection via
region-based fully convolutional networks. In Proceedings of the Advances in
Neural Information Processing Systems (NeurIPS). 379–387.

[13] Christina Delimitrou and Christos Kozyrakis. 2013. ibench: Quantifying inter-
ference for datacenter applications. In 2013 IEEE International Symposium on
Workload Characterization (IISWC). IEEE, 23–33.

[14] Android Developer. 2019. Guide to background processing: Android. https:
//developer.android.com/guide/background

[15] Apple Developer. 2019. Services provided by an app that require it to run in
the background. https://developer.apple.com/documentation/bundleresources/
information_property_list/uibackgroundmodes

[16] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-May
OâĂŹReilly, and Saman Amarasinghe. 2015. Autotuning algorithmic choice
for input sensitivity. ACM SIGPLAN Notices 50, 6 (2015), 379–390.

[17] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural Architecture
Search: A Survey. Journal of Machine Learning Research 20, 55 (2019), 1–21.

[18] Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. NestDNN: Resource-aware multi-
tenant on-device deep learning for continuous mobile vision. In Proceedings of the
Annual International Conference on Mobile Computing and Networking (MobiCom).
115–127.

[19] Gunnar Farnebäck. 2003. Two-frame motion estimation based on polynomial
expansion. In Proceedings of Scandinavian Conference on Image Analysis. 363–370.

[20] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. 2017. Detect to
track and track to detect. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV). 3038–3046.

[21] Sadjad Fouladi, Riad SWahby, Brennan Shacklett, Karthikeyan Balasubramaniam,
William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith
Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing Using
Thousands of Tiny Threads.. In Proceedings of the Symposium on Networked
Systems Design and Implementation (NSDI). 363–376.

[22] Asish Ghoshal, Ananth Grama, Saurabh Bagchi, and Somali Chaterji. 2015. An
ensemble svm model for the accurate prediction of non-canonical microrna
targets. In Proceedings of the 6th ACMConference on Bioinformatics, Computational
Biology and Health Informatics. 403–412.

[23] Brad Glasbergen, Michael Abebe, Khuzaima Daudjee, and Amit Levi. 2020. Sen-
tinel: universal analysis and insight for data systems. Proceedings of the VLDB
Endowment 13, 12 (2020), 2720–2733.

[24] Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. 2016. Robust
random cut forest based anomaly detection on streams. In Proceedings of the
International Conference on Machine Learning (ICML). 2712–2721.

[25] Song Han, Huizi Mao, andWilliam J Dally. 2016. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
(2016), 1–13.

[26] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, AlecWolman,
and Arvind Krishnamurthy. 2016. MCDNN: An approximation-based execution
framework for deep stream processing under resource constraints. In Proceedings
of the Annual International Conference onMobile Systems, Applications, and Services
(MobiSys). 123–136.

[27] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. 2014. High-Speed Tracking
with Kernelized Correlation Filters. IEEE Transactions on Pattern Analysis and
Machine Intelligence 37, 3 (2014), 583–596.

[28] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for MobileNetV3. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV). 1314–1324.

[29] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[30] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman,
Paramvir Bahl, Matthai Philipose, Phillip B Gibbons, and Onur Mutlu. 2018.
Focus: Querying large video datasets with low latency and low cost. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18). 269–286.

[31] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. 2016. Network
trimming: A data-driven neuron pruning approach towards efficient deep archi-
tectures. arXiv preprint arXiv:1607.03250 (2016).

[32] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and
Kilian Q Weinberger. 2018. Multi-scale dense networks for resource efficient
image classification. In Proceedings of International Conference on Learning Repre-
sentations (ICLR).

[33] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS). 4107–4115.

[34] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized Neural Networks: Training Neural Networks with Low
Precision Weights and Activations. Journal of Machine Learning Research 18
(2017), 187–1.

[35] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and< 0.5 MB model size. In Proceedings of International Conference on
Learning Representations (ICLR). 1–13.

[36] Angela H Jiang, Daniel L-K Wong, Christopher Canel, Lilia Tang, Ishan Misra,
Michael Kaminsky, Michael A Kozuch, Padmanabhan Pillai, David G Andersen,
and Gregory R Ganger. 2018. Mainstream: Dynamic Stem-Sharing for Multi-
Tenant Video Processing. In Proceedings of USENIX Annual Technical Conference
(USENIX ATC). 29–42.

[37] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion
Stoica. 2018. Chameleon: scalable adaptation of video analytics. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM). 253–266.

[38] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. 2010. Forward-Backward
error: Automatic detection of tracking failures. In Proceedings of IEEE International
Conference on Pattern Recognition (CVPR). 2756–2759.

[39] Kai Kang, Hongsheng Li, Junjie Yan, Xingyu Zeng, Bin Yang, Tong Xiao, Cong
Zhang, Zhe Wang, Ruohui Wang, Xiaogang Wang, et al. 2017. T-CNN: Tubelets
with convolutional neural networks for object detection from videos. IEEE
Transactions on Circuits and Systems for Video Technology 28, 10 (2017), 2896–
2907.

[40] Michael A Laurenzano, Parker Hill, Mehrzad Samadi, Scott Mahlke, Jason Mars,
and Lingjia Tang. 2016. Input responsiveness: using canary inputs to dynamically
steer approximation. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). 161–176.

[41] Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu. 2020. Statically inferring
performance properties of software configurations. In Proceedings of the Fifteenth
European Conference on Computer Systems. 1–16.

[42] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2017.
Pruning filters for efficient ConvNets. In Proceedings of International Conference
on Learning Representations (ICLR). 1–13.

[43] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV). 2980–2988.

[44] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft COCO: Common
objects in context. In Proceedings of the European Conference on Computer Vision

https://medium.com/@rossbulat/react-native-background-task-management-in-ios-d0f05ae53cc5
https://medium.com/@rossbulat/react-native-background-task-management-in-ios-d0f05ae53cc5
https://pokemongolive.com/en/
https://developer.nvidia.com/embedded/buy/jetson-tx2
https://developer.android.com/guide/background
https://developer.android.com/guide/background
https://developer.apple.com/documentation/bundleresources/information_property_list/uibackgroundmodes
https://developer.apple.com/documentation/bundleresources/information_property_list/uibackgroundmodes


SenSys ’20, November 16–19, 2020, Virtual Event, Japan Xu et al.

(ECCV). 740–755.
[45] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time object

detection for mobile augmented reality. (2019), 1–16.
[46] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. 2016. SSD: Single shot multibox detector.
In Proceedings of the European conference on Computer Vision (ECCV), Vol. 9907.
21–37.

[47] Alan Lukežič, Tom’aš Voj’iř, Luka Čehovin Zajc, Jiř’i Matas, and Matej Kris-
tan. 2018. Discriminative Correlation Filter Tracker with Channel and Spatial
Reliability. International Journal of Computer Vision 126 (2018), 671–688.

[48] Jian-Hao Luo, Hao Zhang, Hong-Yu Zhou, Chen-Wei Xie, JianxinWu, andWeiyao
Lin. 2018. ThiNet: pruning CNN filters for a thinner net. IEEE Transactions on
Pattern Analysis and Machine Intelligence 41, 10 (2018), 2525–2538.

[49] Ashraf Mahgoub, Alexander Michaelson Medoff, Rakesh Kumar, Subrata Mitra,
Ana Klimovic, Somali Chaterji, and Saurabh Bagchi. 2020. {OPTIMUSCLOUD}:
Heterogeneous Configuration Optimization for Distributed Databases in the
Cloud. In 2020 {USENIX} Annual Technical Conference ({USENIX} {ATC} 20). 189–
203.

[50] Ashraf Mahgoub, Paul Wood, Sachandhan Ganesh, Subrata Mitra, Wolfgang Ger-
lach, Travis Harrison, Folker Meyer, Ananth Grama, Saurabh Bagchi, and Somali
Chaterji. 2017. Rafiki: a middleware for parameter tuning of nosql datastores for
dynamic metagenomics workloads. In Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference. 28–40.

[51] Ashraf Mahgoub, Paul Wood, Alexander Medoff, Subrata Mitra, Folker Meyer,
Somali Chaterji, and Saurabh Bagchi. 2019. {SOPHIA}: Online reconfiguration of
clustered nosql databases for time-varying workloads. In 2019 {USENIX} Annual
Technical Conference ({USENIX} {ATC} 19). 223–240.

[52] Amiya K Maji, Subrata Mitra, Bowen Zhou, Saurabh Bagchi, and Akshat Verma.
2014. Mitigating interference in cloud services by middleware reconfiguration.
In Proceedings of the 15th International Middleware Conference. 277–288.

[53] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.
2011. Bubble-up: Increasing utilization in modern warehouse scale computers via
sensible co-locations. In Proceedings of the 44th annual IEEE/ACM International
Symposium on Microarchitecture. 248–259.

[54] John D. McCalpin. 1991-2007. STREAM: Sustainable Memory Bandwidth in High
Performance Computers. Technical Report. University of Virginia, Charlottesville,
Virginia. http://www.cs.virginia.edu/stream/

[55] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (Dec. 1995), 19–25.

[56] Chulhong Min, Alessandro Montanari, Akhil Mathur, and Fahim Kawsar. 2019. A
closer look at quality-aware runtime assessment of sensingmodels inmulti-device
environments. In Proceedings of the 17th Conference on Embedded Networked
Sensor Systems. 271–284.

[57] Subrata Mitra, Manish K Gupta, Sasa Misailovic, and Saurabh Bagchi. 2017. Phase-
aware optimization in approximate computing. In 2017 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE, 185–196.

[58] Rajesh Krishna Panta, Saurabh Bagchi, and Samuel P Midkiff. 2011. Efficient
incremental code update for sensor networks. ACM Transactions on Sensor
Networks (TOSN) 7, 4 (2011), 1–32.

[59] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
XNOR-Net: ImageNet classification using binary convolutional neural networks.
In Proceedings of the European Conference on Computer Vision (ECCV), Vol. 9908.
525–542.

[60] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Unified, real-time object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 779–788.

[61] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

[62] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards real-time object detection with region proposal networks. In Proceedings
of the Advances in Neural Information Processing Systems (NeurIPS). 91–99.

[63] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision 115, 3 (2015), 211–252.

[64] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 4510–4520.

[65] Xiaoyong Shen, Aaron Hertzmann, Jiaya Jia, Sylvain Paris, Brian Price, Eli Shecht-
man, and Ian Sachs. 2016. Automatic portrait segmentation for image stylization.
In Computer Graphics Forum, Vol. 35. Wiley Online Library, 93–102.

[66] Hui Shuai, Qingshan Liu, Kaihua Zhang, Jing Yang, and Jiankang Deng. 2018.
Cascaded Regional Spatio-Temporal Feature-Routing Networks for Video Object
Detection. IEEE Access 6 (2018), 3096–3106.

[67] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V Le. 2019. MNasNet: Platform-aware neural architecture

search for mobile. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2820–2828.

[68] Mingxing Tan and Quoc V Le. 2019. EfficientNet: Rethinking model scaling for
convolutional neural networks. In Proceedings of the International Conference on
Machine Learning (ICML).

[69] Mingxing Tan, Ruoming Pang, and Quoc V Le. 2020. EfficientDet: Scalable and
efficient object detection. (2020), 10781–10790.

[70] Matthew Tancreti, Mohammad Sajjad Hossain, Saurabh Bagchi, and Vijay Raghu-
nathan. 2011. Aveksha: A hardware-software approach for non-intrusive tracing
and profiling of wireless embedded systems. In Proceedings of the 9th ACM Con-
ference on Embedded Networked Sensor Systems. 288–301.

[71] Surat Teerapittayanon, Bradley McDanel, and HT Kung. 2016. BranchyNet: Fast
inference via early exiting from deep neural networks. In Proceedings of IEEE
International Conference on Pattern Recognition (ICPR). 2464–2469.

[72] Andreas Veit and Serge Belongie. 2019. Convolutional networks with adaptive
inference graphs. International Journal of Computer Vision 128 (2019), 730–741.

[73] Robert J Wang, Xiang Li, and Charles X Ling. 2018. PELEE: A real-time object
detection system on mobile devices. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS). 1963–1972.

[74] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming
Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. 2019. FBNet:
Hardware-aware efficient convnet design via differentiable neural architecture
search. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 10734–10742.

[75] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis,
Kristen Grauman, and Rogerio Feris. 2018. BlockDrop: Dynamic inference paths
in residual networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 8817–8826.

[76] Ran Xu, Jinkyu Koo, Rakesh Kumar, Peter Bai, Subrata Mitra, Sasa Misailovic, and
Saurabh Bagchi. 2018. VideoChef: efficient approximation for streaming video
processing pipelines. In Proceedings of the USENIX Annual Technical Conference
(USENIX ATC). 43–56.

[77] Ran Xu, Rakesh Kumar, Pengcheng Wang, Peter Bai, Ganga Meghanath, So-
mali Chaterji, Subrata Mitra, and Saurabh Bagchi. 2020. ApproxNet: Con-
tent and Contention-Aware Video Analytics System for Embedded Clients.
arXiv:1909.02068 [cs.CV]

[78] Ran Xu, Subrata Mitra, Jason Rahman, Peter Bai, Bowen Zhou, Greg Bronevetsky,
and Saurabh Bagchi. 2018. Pythia: Improving datacenter utilization via precise
contention prediction for multiple co-located workloads. In Proceedings of the
International Middleware Conference (Middleware). 146–160.

[79] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang. 2020.
Resolution Adaptive Networks for Efficient Inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2369–2378.

[80] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J Freedman. 2017. Live Video Analytics at Scale
with Approximation and Delay-Tolerance.. In Proceedings of the Symposium on
Networked Systems Design and Implementation (NSDI), Vol. 9. 377–392.

[81] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. ShuffleNet: An
extremely efficient convolutional neural network for mobile devices. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
6848–6856.

[82] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. 2019. Object
detection with deep learning: A review. IEEE Transactions on Neural Networks
and Learning Systems 30, 11 (2019), 3212–3232.

[83] Xizhou Zhu, Jifeng Dai, Lu Yuan, and Yichen Wei. 2018. Towards high perfor-
mance video object detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 7210–7218.

[84] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. 2017. Flow-
guided feature aggregation for video object detection. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV). 408–417.

[85] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. 2017. Deep
feature flow for video recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2349–2358.

[86] Shlomo Zilberstein. 1996. Using anytime algorithms in intelligent systems. AI
magazine 17, 3 (1996), 73–73.

http://www.cs.virginia.edu/stream/
https://arxiv.org/abs/1909.02068

	Abstract
	1 Introduction
	2 Background
	2.1 Object Detection
	2.2 Object Tracking
	2.3 Approximate Computing and Adaptation

	3 Overview
	4 Design Elements of ApproxDet
	4.1 Multi-branch Object Detection Framework
	4.2 Content Feature Extraction
	4.3 Latency Modeling
	4.4 Accuracy Modeling
	4.5 Synthetic Contention Generator
	4.6 Profiling Cost and Sub-sampling
	4.7 Scheduler

	5 Implementation
	5.1 Configuration of the Tuning Knobs
	5.2 3D Contention Generator (CG)
	5.3 Training of Latency and Accuracy Models

	6 Evaluation
	6.1 Evaluation Platform
	6.2 Datasets, Task, and Metrics
	6.3 Baselines
	6.4 End-to-End Evaluation on Budgeted Latency
	6.5 Case Studies on Changing Conditions
	6.6 Performance Prediction Models
	6.7 Overhead: Switching, Scheduler, and Online Components

	7 Discussion and Future Work
	8 Related Work
	9 Conclusion
	References

