
Virtuoso: Energy- and Latency-Aware Streamlining of Streaming

Videos on SOCs

JAYOUNG LEE� PENGCHENGWANG� RAN XU� SARTHAK JAIN� VENKAT DASARI� NOAH
WESTON� YIN LI� SAURABH BAGCHI� SOMALI CHATERJI�

� PURDUE UNIVERSITY, � ARMY RESEARCH LAB, � U OF WISCONSIN AT MADISON

Eicient and adaptive computer vision systems have been proposed to make computer vision tasks, such as image classiication

and object detection, optimized for embedded or mobile devices. These solutions, quite recent in their origin, focus on

optimizing the model (a deep neural network, DNN) or the system by designing an adaptive system with approximation

knobs. Despite several recent eforts, we show that existing solutions sufer from two major drawbacks. First, while mobile

devices or systems-on-chips (SOCs) usually come with limited resources including battery power, most systems do not

consider the energy consumption of the models during inference. Second, they do not consider the interplay between the

three metrics of interest in their conigurations, namely, latency, accuracy, and energy. In this work, we propose an eicient

and adaptive video object detection system Ð Virtuoso, which is jointly optimized for accuracy, energy eiciency, and

latency. Underlying Virtuoso is a multi-branch execution kernel that is capable of running at diferent operating points in

the accuracy-energy-latency axes, and a lightweight runtime scheduler to select the best it execution branch to satisfy the

user requirement. We position this work as a irst step in understanding the suitability of various object detection kernels on

embedded boards in the accuracy-latency-energy axes, opening the door for further development in solutions customized to

embedded systems and for benchmarking such solutions. Virtuoso is able to achieve up to 286 FPS on the NVIDIA Jetson

AGX Xavier board, which is up to 45 times faster than the baseline EicientDet D3 and 15 times faster than the baseline

EicientDet D0. In addition, we also observe up to 97.2% energy reduction using Virtuoso compared to the baseline YOLO

(v3) Ð a widely used object detector designed for mobiles. To fairly compare with Virtuoso, we benchmark 15 state-of-the-art

or widely used protocols, including Faster R-CNN (FRCNN) [NeurIPS’15], YOLO v3 [CVPR’16], SSD [ECCV’16], EicientDet

[CVPR’20], SELSA [ICCV’19], MEGA [CVPR’20], REPP [IROS’20], FastAdapt [EMDL’21], and our in-house adaptive variants

of FRCNN+, YOLO+, SSD+, and EicientDet+ (our variants have enhanced eiciency for mobiles). With this comprehensive

benchmark, Virtuoso has shown superiority to all the above protocols, leading the accuracy frontier at every eiciency level

on NVIDIA Jetson mobile GPUs. Speciically, Virtuoso has achieved an accuracy of 63.9%, which is more than 10% higher

than some of the popular object detection models, FRCNN at 51.1%, and YOLO at 49.5%.

CCS Concepts: · Computing methodologies→Machine learning; · Computer systems organization→ Embedded &

cyber-physical systems.

Additional KeyWords and Phrases: Adaptive inference, video object detection, energy consumption, eiciency-aware analytics,

mobile GPUs, embedded computing, coniguration tuning.

1 INTRODUCTION

Video analytic systems have seen widespread success in various domains, ranging from computationally heavy
tasks such as recognizing faces for surveillance to mobile applications such as detecting objects for mobile-based
augmented reality (AR) [1, 35, 39], and to real-time systems such as localizing pedestrians and cars for autonomous

Author’s address: Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali

Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

1084-4309/2022/10-ART

https://doi.org/10.1145/3564289

ACM Trans. Des. Autom. Electron. Syst.

https://doi.org/10.1145/3564289

2 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

driving [2, 14, 22]. A key function shared by these applications is the ability to detect objects in videos. There is a
growing number of use cases for performing such video object detection on mobile devices. These devices are
increasingly equipped with mobile GPUs, albeit they are much weaker computationally than those on server-class
machines.

Nevertheless, there is an impetus to perform the video processing in (near) real-time on the streaming (video)
content, on the device itself1. This is needed, say, to improve the user’s immersive experience (e.g., in AR/VR
games) or to give high-conidence outputs from streaming videos (e.g., for pedestrian recognition in autonomous
driving). A typical operating point in processing each frame is 33 ms, which corresponds to the video stream
rate of 30 frames per second (FPS). We ind empirically that state-of-the-art (SOTA) protocols (designed for
servers) when executed on mobile platforms signiicantly overshoot this latency margin. For example, MEGA [7],
considered a SOTA solution takes 253.4 msec per frame on NVIDIA AGX Xavier while occupying all computing
resources. AGX Xavier is a GPU hardware commonly fused for embedded GPU applications and one that we also
utilize for Virtuoso. In response, a slew of eicient models and systems have been proposed to improve their
eiciency or performance on mobile devices [6, 18, 24, 37, 42, 45, 51, 52].
Another approach to make streaming analytics feasible on mobile devices is to utilize both object detection

and tracking, which is denoted by the technique łtracking-by-detectionž [3, 28]. By interspersing multiple frames
of tracking (lightweight compared to detection) with each frame where object detection is executed, the overall
performance is sped up. The tracking-by-detection technique exposes several adaptation strategies. This can
include selecting among a set of detectors and trackers and how to handle the relative frequency between the
detector and tracker. Empirically, we ind that the execution time of an object tracker is 10X lower than the
time for an object detector. A judicious choice of such adaptation strategies is needed to satisfy the real-time
requirements for energy, latency, and accuracy, on mobile devices.
The stringent requirements on mobile devices at runtime expose another challenge for streaming video

analytics: how to adapt (at runtime) to the dynamic user requirements and available resources on the device? To
address this problem, several recent works considered multi-branch solutions [12, 21, 48, 49]. Such solutions
include multiple execution kernels in a system and choosing the optimal one during runtime to satisfy the user
requirement. Yet, omitting features that control energy consumption is a major drawback of all these approaches.
Further, compared to recent studies on eicient convolutional neural network (CNN) architectures, there have
been limited studies and applications on eicient object detection solutions on embedded devices, along with the
issue of using outdated feature extractors.
In real applications, the change of video content, available resources on mobile devices, and manual control

of the requirements make dynamic adaptation even harder. The wide range of energy, latency, and accuracy
requirements means the system needs to have adaptability to a variety of scenarios. Thus, the design must satisfy
the following prerequisites: (1) designing an execution kernel that is both energy and latency eicient for the
mobile device, (2) analysis of the energy consumption and latency performance of all execution branches on
mobile devices, and (3) an adaptive scheduler to make decisions at runtime to satisfy multiple requirements
simultaneously. However, to our knowledge, no prior work has included all of these design innovations.

In this work, we present Virtuoso2, which is customized for mobile devices under varying resource constraints,
with additional eiciency knobs3 for energy-aware adaptation. Virtuoso selects the most eicient baseline
object detectors EicientDet [45] and SSD [24], enhances them by integrating object trackers, and provides 155
execution branches by exposing 8 eiciency knobs within one system. Moreover, Virtuoso has a scheduler that

1For convenience we will often use the shorthand łdevice" to refer to a łmobile device".
2Just like a Virtuoso is a person who has exceptional skill, expertise, or talent at some endeavor, we believe our system demonstrates such

skill in coniguring streaming video object detection on embedded or mobile devices.
3We use the term łeiciency knobsž rather than the more common term łtuning knobsž as we are focusing on the performance metric of

accuracy, normalized by latency or energy cost to achieve that accuracy, in other words, eicient accuracy.

ACM Trans. Des. Autom. Electron. Syst.

Virtuoso: Energy- and Latency-Aware Streamlining of Streaming Videos on SOCs • 3

Fig. 1. The illustration of Virtuoso, which includes two important components, a multi-branch object detection kernel, and

a scheduler. The multi-branch object detection kernel was achieved by exposing multiple tuning knobs for both the object

detector and the object tracker. The scheduler can configure the kernel at runtime to satisfy user requirements of latency,

energy, and accuracy.

can select the optimal branch during runtime to satisfy the energy and latency requirements at the same time,
while maximizing the accuracy.

We evaluate Virtuoso and the baselines using the ILSVRC 2015 VID datasets on 3 NVIDIA mobile GPUs of
increasing compute capacity Ð Jetson TX2, Xavier NX, and AGX Xavier, under 2 diferent power modes of AGX
Xavier. On each board and under each power mode, Virtuoso is the best solution that can automatically choose
the optimal branch to satisfy the energy and latency requirements, and maximize the accuracy performance.
With the multi-branch execution kernel, Virtuoso can adapt its energy eiciency within a wide range (span
of 89X) and also latency in a wide range (span of 128X). Such wide ranges of energy eiciency and latency can
satisfy various scenarios at runtime to optimize the functionality of our video object detection system. Given 1
J per frame energy requirement, Virtuoso can achieve 52.0% accuracy, and given a 33.3 msec latency budget,
Virtuoso can achieve 60.1% accuracy on an AGX Xavier board. Additionally, when energy and latency do not
have stringent limits, Virtuoso can achieve 63.9% accuracy, which is more than 10% higher than that of baseline
models. To further explore the performance of Virtuoso under a more realistic scenario, we also evaluated a
total of 15 baseline models on 3 diferent embedded boards under diferent resource contention levels to better
understand the energy, latency, and accuracy performance of these latest models for video object detection.

In this paper, our contributions are as follows.
(1) We present Virtuoso, the best energy eicient and adaptive video object detection system for mobile devices.

Virtuoso can dynamically adapt its runtime conigurations based on the given user requirements. Our runtime
scheduler solves the optimization problem for accuracy at any energy and latency level and thus can guarantee
the Pareto optimal performance on resource-constrained devices. We are the only adaptive model doing this
3D (energy-latency-accuracy) tuning in real-time during inference.

(2) Virtuoso designs an eicient multi-branch execution kernel with a total of 8 diferent eiciency knobs, which
are optimized for both energy eiciency and latency on mobiles. This gives Virtuoso more lexibility to a

ACM Trans. Des. Autom. Electron. Syst.

4 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

wider range of available resources, span of 89X energy adapting space when baseline models cannot, and 4.5X
times larger latency adapting space than the baseline FastAdapt [21]. Virtuoso can achieve 97% lower energy
consumption and up to 50 times faster execution, compared to using the object detection kernel only.

(3) We evaluate our proposed systems and 15 baselines (including 3 latest video object detection solutions and
our enhanced FRCNN [38], YOLO [37], SSD [24], and EicientDet [45] for both energy and latency on the
embedded devices) on 3 NVIDIA Jetson embedded devices and under diferent GPU resource availability,
energy eiciency constraint, and latency constraints. In addition, we also investigate and evaluate the impact
of diferent device power modes, which have not been evaluated before. Diferent power modes allow several
conigurations with diferent CPU frequencies and number of CPU cores online. We show accuracy superiority
to baselines given any eiciency constraint.

The rest of the paper is organized as follows. In Section. 3, we present our overall design for Virtuoso and its
key components, such as the dynamic scheduler and eiciency knobs for handling various user requirements for
latency or energy consumption. In Section. 4, we present the multi-branch kernel design and implementation of
Virtuoso, along with diferent runtime environments for evaluation. Section. 5 consists of two parts: First, we
evaluate the overall performance of Virtuoso. Next, we evaluate Virtuoso and its multi-branch kernels against
other baselines.

2 RELATED WORK

Video object detection seeks to locate object instances in video frames using bounding boxes and simultaneously
classify the instance into target categories with their class probabilities. The most widely used detection models
adopt CNNs, broken down into two parts: a backbone network that extracts features from images (e.g., ResNet),
and a detection network or head, which classiies object regions and reines the localization of the objects
based on the extracted features (e.g., Region Proposal Network or Weighted Bi-directional Feature Pyramid
Network). The detection network can be further categorized into two-stage detectors [10, 38, 45], or single-stage
detectors [24, 37, 51]. One representative work of two-stage detectors is Faster R-CNN (FRCNN) [38], where
plausible regions are proposed in the irst stage, followed by decision reinement in the second. Speciically,
CNNs extract image feature maps and feed them into Region Proposal Networks (RPN) to generate regions of
interest (RoIs) in the irst stage. Then, in the second stage, the RoI pooling layer combines the feature maps from
convolutional layers and the proposals from the RPN together to generate proposal feature maps and provide
these to the classiier network. On the other hand, YOLO and SSD are the representative works for single-stage
detectors. These single-stage end-to-end detection solutions do not include the step of region proposal generation,
but rather, directly classify a dense set of pre-deined regions from the feature maps. One-stage detection models
are usually easier to train and are more computationally eicient but often sufer from lower accuracy, especially
for mAP with high IoU thresholds.

A general trend in object detection is to design deeper and more complex object detection networks to achieve
higher accuracy such as in recent video object detection algorithms [7, 7, 11, 41, 47, 50, 53]. There is ongoing
research on pushing the accuracy further for video object detection tasks, for example, frame aggregation [7, 50],
a technique that utilizes features from other frames during inference to enhance the detection results. SELSA [47]
widens the window for selecting the frames for aggregation by not only selecting neighboring frames but
considering their semantic neighborhood. MEGA [7] takes the work from SELSA one step further and adds global
frame aggregation where frames from other videos, sharing semantic similarity, are also taken into account. While
these techniques are performed during the runtime of the inference task, REPP [41] reuses the detection output
from a baseline model to further post-process the detection output to enhance the detection results after the
analysis of a video. Other works make use of optical low [53], or techniques such as knowledge distillation [11].

ACM Trans. Des. Autom. Electron. Syst.

Virtuoso: Energy- and Latency-Aware Streamlining of Streaming Videos on SOCs • 5

However, these advancements in accuracy do not necessarily target making these algorithms more eicient in
terms of the network size, energy consumption, and latency of the detection task.

Several studies have been conducted to optimize accuracy and latency for video object detection tasks. Feicht-
enhofer et al. [13] combines an object detector and an object tracker to create a joint design that is trained and
deployed in an end-to-end fashion so that a lightweight tracker could speed up the process of a detector-only
design. Jiang et al. [18] use an LSTM module to propagate the high-level features across frames to reduce the
computation cost resulting from the optical low technique that captures the temporal information in the video.
A łkey framež concept is used in [52] to efectively group adjacent frames with similar features, thus saving
redundant computation costs. Chen et al. [6] also utilize the concept of łkey framež, to adaptively schedule the
computation path to sparsely spread out operations with high computation costs. However, most studies that
tackle the optimization challenge between accuracy and latency still focus on server-class GPUs, which are much
more powerful than mobile or embedded devices 4. In many real-world object detection tasks, the task has to be
carried out in a real-time fashion on a computationally constrained platform, such as a mobile device. In such
cases, video object detection becomes challenging because of the resource constraints and the stringent energy
budget (limited battery) and latency budget (30ś50 msec/frame) for acceptable video quality.

Some recent approaches take the real-world computation constraint into account and design eicient backbones
that are speciically designed to reduce the computation cost. MobileNetV2 [42] uses an inverted residual block
to reduce the number of computations, and thus improve computational eiciency. AdaScale [8] makes use of
the content information of videos to dynamically re-scale the images to lower resolution, and at the same time,
achieve better accuracy. GhostNet [16] uses a łghost modulež to reuse some of the features from the feature map
to reduce the computational cost. These are examples that utilize a human-crafted component to optimize the
model. On the other hand, model architectures can be automatically optimized using a neural architecture search
(NAS) technique. NAS-based models [43, 44, 46] pre-deine the blocks or layers that will be used to construct the
network, and search through combinations and connections of the pre-deined components. EicientDet [45]
introduces reinforcement learning (RL) based-NAS for a light-weight network. Instead of modifying or creating a
new network design, some solutions add adaptive components to the pipeline, such as using a dynamic pipeline
adapting to content at runtime [12, 49]. However, all of the aforementioned studies focus on the network design,
which performs the object detection task in limited scenarios. Even though these works have improved the
computational eiciency, they still require further development and improvement to be deployed for a real-time
dynamic environment on mobile devices with changing energy and latency requirements. For example, they may
require signiicant feature engineering to it the specialized capabilities of the mobile GPUs as done in our prior
work [15].

As an overall summary, we also include Fig. 2 to visualize the comparison between key features of Virtuoso.
Overall, Virtuoso is a video object detection framework that comes with a multi-kernel design for adaptive
inference and is able to consider both energy and latency performance on embedded devices. Other baselines do
not consider the latency or energy performance on embedded devices or do not have adaptive features during
inference.

4We use the terms łmobile devicež and łembedded devicež synonymously.

ACM Trans. Des. Autom. Electron. Syst.

6 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

Fig. 2. Comparison of related works against Virtuoso.

Benchmarking video object detection works on embedded devices: With the rise of video object detection,
coupled with the popularity of edge computing in recent years, video object detection tasks have been pushed to
the edge/embedded devices where the data is generated. MEVBench [9] has provided a benchmark suite for a
range of mobile vision applications such as face detection, object tracking, and feature extraction. However, none
of SOTA works or the latest devices have been used, and its evaluation is not on the GPU, which is the de facto
hardware for DNN-based computer vision works. AIoT bench [26] also provides an AI tasks’ benchmark suite
based on Android and Raspberry-Pi and covers diferent frameworks like TensorFlow and Cafe2. Nevertheless,
there are no SOTA models in it and no evaluation is presented. Qasaimeh et al. [34] has conducted benchmarks
of accuracy, latency, and energy on a wide range of vision kernels and neural networks on multiple embedded
devices, i.e., ARM57 CPU, Nvidia Jetson TX2, and Xilinx ZCU102 FPGA. However, it only includes one GPU-
enabled device and thus is not comprehensive since embedded devices with GPUs are very common nowadays.
Also, it has not included the SOTA models and does not focus on video object detection, which is the Virtuoso’s
focus. Also, lots of video object detection solutions are designed by including multiple tuning knobs, Qasaimeh
et al. [34] has not shown the accuracy-eiciency tradeof on embedded devices. Buckler et al. [4] take a more
detailed look at the kernels of the image signal processing (ISP) pipeline, e.g., it does a detailed investigation
of how many stages of an ISP pipeline should be used, what algorithm the image sensor should use, and the
quantization of the ADC. Consequently, it is less complete in terms of its coverage of the detection kernels. It
covers only one model for object detection, Faster R-CNN, which we also cover. They do not measure power
consumption but use analytical formulae and simulations. Euphrates [54] optimizes the interaction between the
ISP and the CNN in the CV pipeline. This also does the optimization in an SoC architecture speciic manner.
However, it does not focus on the video object detection task. A comprehensive benchmark is important to
understand the advantages and disadvantages of diferent eicient and adaptive models, i.e., how accurate they
are given an eiciency requirement and how much these models can adapt in terms of eiciency.

3 TECHNIQUES

We now present the techniques used in the design and implementation of Virtuoso. To achieve high energy
eiciency and low latency on embedded devices, we irst propose a collection of eiciency knobs (Sec. 3.1) and an
eicient multi-branch object detection kernel (Sec. 3.2). Our system combines the eiciency knobs and is capable

ACM Trans. Des. Autom. Electron. Syst.

Virtuoso: Energy- and Latency-Aware Streamlining of Streaming Videos on SOCs • 7

of running at diferent operating points in the accuracy-energy-latency axes through its multiple execution
branches. We then propose our runtime scheduler to solve the constrained optimization problem at any energy
eiciency or latency requirements (Sec. 3.3).

3.1 Eficiency knobs for Object Detection Models

To efectively make object detection backbones both energy and time eicient, the tracking-by-detection technique
is one of the most common methods for video object detection. Particularly, considering a video as a sequence of
consecutive frames, we deine Group-of-Frames (GoF) as a collection of consecutive frames in which we apply
the computationally expensive object detector to the irst frame, and apply the light-weight object tracker, to
the remaining frames. An object tracker is highly eicient since it is much cheaper in terms of computation,
with at least 20 times better latency performance than an object detector (from our results). However, it relies
on the relationship between the current frame and the past frame, and the detection results of the past frame.
Thus, an object tracker, despite being more eicient, cannot run without an object detector. The latter provides a
calibrated detection result on every irst frame of a GoF.

3.1.1 Eficiency Knobs for the Object Detector.

Object Detection Backbone: We select a total of four diferent object detectors to perform the detection Ð
EicientDet, SSD, FRCNN, and YOLO, and call them łObject Detection Backbonesž. Switching among these
kernels can be used as the primary adaptation strategy based on the users’ requirements. Particularly, EicientDet
is a family of object detectors that are scaled up with diferent scaling factors, starting from the base model
D0. Among the 8 variants of EicientDet (D0-D7), we experimentally ind that model variants with larger scale
than D3 fail to run on our embedded devices. Thus, we select EicientDet D0 and D3 as the most light-weight,
and heavy-weight ones, among all executable variants. These variants within the same object detector family
enable the tradeof with respect to the accuracy, energy eiciency, and latency. For simplicity, an object detector
backbone refers to an object detector, or a particular variant, e.g., EicientDet D0 or D3.
Input Image Resolution for the Object Detector Backbone: Given the diferent object detector backbones,
we further consider additional eiciency knobs. First is the resolution of the input image fed into the detector.
Each detector backbone comes with a pre-deined image resolution that can be processed through the neural
network, and all input images are resized to the pre-deined resolution as the irst step. We modify the input layer
of the object detector backbone to accept images with diferent resolutions. This is possible as the backbones are
fully convolutional. Feeding smaller-scaled image results in both less energy consumption and less computational
overhead, translating to a more eicient model.
Number of Proposals in the Object Detector Backbone: FRCNN is a two-stage object detector. The irst stage
is a Region Proposal Network (RPN) to process the feature map output from the feature extractor and return a
pre-deined number of object candidates in the feature map. We implement number of proposals as the eiciency
knob in the RPN to modify the number of output object candidates. The number of object candidates is directly
related to the computation in the second stage of the detector. Thus, we are able to leverage the accuracy vs.
eiciency tradeof by modifying the number of proposals. This knob is only available for FRCNN.
Number of Feature Maps in the Object Detector Backbone: To further engineer our object detector backbone,
we explore the MnasFPN [5] feature pyramid in the SSD detector that is used to concatenate feature maps.
MnasFPN concatenates a total of four feature maps, responsible for detecting objects on diferent scales. The
irst feature map has the largest feature map size and is responsible for detecting objects at a iner granularity.
Following the path down the feature pyramid from the irst featuremap, the following featuremaps are compressed
gradually and are used to detect larger objects. We explore the tradeof of accuracy versus eiciency by using

ACM Trans. Des. Autom. Electron. Syst.

8 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

diferent combinations of the four feature maps, such as [1, 2, 3], [2, 4], and so on, where 1 to 4 stand for the four
feature maps.

3.1.2 Eficiency Knobs for the Object Tracker.

Object Tracker: Another major component of our eicient design is the object tracker. Similar to diferent object
detector backbones, we also utilize multiple object trackers. A total of four object trackers, MedianFlow [19],
KCF [17], CSRT [25], and OpticalFlow [20], are utilized and explored.
Resizing factor - Input Image Resolution for Object Tracker: The resizing factor for the input image of the
object tracker is changed here such that a larger image requires the tracker to process through a larger number
of pixels, with a reduction in eiciency.
Conidence Threshold of the Object Detector Backbone: The conidence threshold of the object detector
backbone is closely related to the performance of the object tracker. A typical eicient detector backbone, such as
EicientDet or SSD, has a pre-deined number of detected objects or outputs (e.g., detections with the top 100
conidence scores for both EicientDet and SSD) to increase the accuracy performance of the model. A spike in
energy and latency overhead is encountered if the tracker tracks all the detected objects. For example, the latency
for tracking a single object of a 1280 x 720 image takes about 6.5 msec on the Xavier AGX board. For tracking 100
images, this value becomes 344.0 msec, which is more than 50 times degraded (higher) latency. Although the
instantaneous power measurements are similar for both cases, since the energy consumption is accumulated
power over time, the impact on latency afects energy consumption as well. Thus, we set a tunable threshold to
control the number of objects to track.
Detector Interval: Virtuoso leverages the usage frequency for the object detector backbone and the object
tracker in the GoF. Every irst frame in the GoF is passed through the object detector backbone to provide
calibrated detection results for the object tracker, and the rest of the frames are passed through the object tracker.
We deine the number of frames in the GoF as the detector interval, indicating how often the detector should be
run. For example, if the detector interval is 1, we run the object detector on all frames. In contrast, if the detector
interval is 8, we run the object detector every 8 frames, and the rest with the object tracker.

3.2 Eficient Multi-Branch Object Detection Kernel

We propose our multi-branch object detection kernel as the combination of all possible combinations of the
eicient methods or knobs listed in Sec. 3.1. Particularly, an execution branch corresponds to a collection of
choices on each eiciency knob and each branch can independently inish the task. Rigorously, an execution
branch � is denoted in a tuple form,

� = (�, ��, ��, ��, �, � � , ��, �), (1)

where � is the object detector backbone, �� is the input resolution of the detector, �� is the number of proposals
in the detector, �� is the number of feature maps in the detector, � is the object tracker, � � is the resizing factor of
the input image for the object tracker, �� is the conidence threshold to track, and � is the detector interval. Thus,
each execution branch is an instantiation in the high-dimensional coniguration space, with a certain accuracy
�(�), energy consumption � (�), and execution time (latency) � (�). However, these execution branch choices are
not fully independent. For example, if we choose EicientDet as the object detector, we cannot use the łNumber
of Proposalsž, which does not apply to EicientDet. We further discuss the implementation details in Sec. 4.1.
This notion of inding optimal conigurations in large coniguration space with dependencies among diferent
parameters has been tackled in other contexts, such as for distributed database tuning [27].
The advantage of multiple eiciency knobs over one knob is that their combination achieves a better Pareto

optimal accuracy frontier for any eiciency requirement. In Fig. 3, we study the accuracy of Virtuoso along with
each eiciency knob given a certain energy constraint compared to that of Virtuoso using multiple knobs. The

ACM Trans. Des. Autom. Electron. Syst.

Virtuoso: Energy- and Latency-Aware Streamlining of Streaming Videos on SOCs • 9

Fig. 3. Accuracy of Virtuoso given multiple eficiency knobs versus a

single eficiency knob. The overall accuracy versus energy (same trend

with accuracy vs. latency) tradeof is always beter using multiple

knobs combined, compared to only using a single knob, validating

the efectiveness of multiple knobs stacked together.

Fig. 4. A Pareto frontier for the accuracy-

energy/latency tradeof for a particular model, by

varying its eficiency knobs. The Pareto frontier

has to be considered separately for each embed-

ded device.

results have shown that using multiple eiciency knobs gives a wider spectrum of accuracy vs. energy tradeof
and much higher accuracy at any energy level.

3.3 Scheduler

We design the scheduler in Virtuoso to select the most accurate branch ���� to satisfy users’ requirements
both for the execution time (a budget of �0 per video frame) and the energy consumption (a budget of �0 per
frame), at runtime. During this optimization process, the user may specify either energy or latency as the major
SLA, and the other as the minor SLA for prioritization. Fig. 4 conceptually shows the selection of the scheduler,
where among all possible execution branches, the scheduler picks the Pareto frontier performance branches that
achieves the highest performance in both latency or energy vs. accuracy. Such a design with multiple execution
branches on the Pareto frontier is crucial to adapt and achieve high accuracy performance while conforming to
user requirements that may change at runtime.

Rigorously, the scheduler solves the following optimization problem:

argmax
�∈B

�(�) � .� . � (�) ≤ �0, � (�) ≤ �0, (2)

where B is the set of all possible branches in the multi-branch object detection kernel. �(�), � (�), and � (�) are the
accuracy, energy eiciency, and the latency of branch �, respectively. Energy consumption has not been explored
in existing studies on embedded object detectors.

ACM Trans. Des. Autom. Electron. Syst.

10 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

Algorithm 1: Pseudocode for the scheduler.

Input:�����_�����������,�����_�����������

1 ����_���� �� = ��ℎ������ .������� (�����_�����������,�����_�����������);

2 for �����_� ���� do

3 �������� .���_���� (����_���� ��);

4 if ��������_� ���� then

5 �������_������� /= ��������_�������� ;

6 �������_������ /= ��������_�������� ;

7 �������_������� = �������_������ = 0;

8 if ���_����_����������� ! = ���_����_����������� then

9 ����_���� �� = ��ℎ������ .����ℎ����� (���_����_�����������);

10 end

11 ������ (�����_� ����);

12 �������_������� + = ��������_�������;

13 �������_������ + = ��������_������;

14 else

15 ����� (�����_� ����);

16 �������_������� + = �������_�������;

17 �������_������ + = �������_������;

18 end

19 end

Algorithm 1 presents a high-level overview of our scheduler design. Note that the ����_���� �� variable consists
of all the eiciency knobs settings that deine an execution branch. The scheduling process begins by taking the
user requirement as input. First, with either energy or latency as the major requirement, all the branches that meet
the user-speciied value will be iltered. Next, if there is a user-speciied minor requirement as well, the branches
iltered by the major requirement will again be pruned using the minor requirement. Finally, given the remaining
branches that meet the user requirements, the accuracy predictor predicts and selects the highest accuracy branch
among the iltered branches. The scheduler is triggered at the beginning of the inference with ��ℎ������ .������� (),
and then is triggered (��ℎ������ .����ℎ����� when it detects a change in the user requirement.

As eiciency is one of the main drivers for the design of Virtuoso, the scheduler should also be lightweight,
making immediate decisions as video frames arrive in the streaming style. To solve this problem, we model
the energy consumption, latency, and accuracy of each execution branch in a data-driven manner. Particularly,
we collect energy, latency, and the accuracy proile of each branch oline. Then, we train the energy, latency,
and accuracy prediction models. We then use these models during the online phase so as to inish the task of
the scheduler. When taking the choices of embedded devices, their power modes, and resource contention into
consideration, these models are more complex than the simpliied form in Eq. 2, and our detailed design follows
next.
Energy Prediction Model: The energy consumption � (�) of an execution branch is measured by calculating the
average energy consumption of processing a single frame for each branch. We irst proile the energy consumption
on sample videos instead of the entire dataset and measure the overall energy consumption of each execution
branch. This is because the overall energy consumption of each execution branch is consistent across video
frames and does not require such large amount of proiling data. Since the exact energy consumption of a speciic

ACM Trans. Des. Autom. Electron. Syst.

Virtuoso: Energy- and Latency-Aware Streamlining of Streaming Videos on SOCs • 11

process on the embedded devices could not be measured, we use the overall energy consumption of the board
as our metric. We use the following Eq. 3, where � represents the number of frames within the video, � (�)
represents the instantaneous power measured at every 1 second interval, and � represents the overall time of
inference.

� (�) =

∑�
�=0 � (�)

� ∗�
. (3)

Latency Prediction Model: The latency � (�) of an execution branch is afected by many factors. For example,
due to the diferent computation capabilities of embedded boards, the latency on each board is diferent. Also, the
power mode of the device and the resource contention also afect the runtime latency of an execution branch. To
minimize the proiling cost, we use the following two techniques. First, we proile the latency on sample videos
instead of on the entire dataset. This is because the latency of each execution branch is consistent across video
frames and does not require such large amount of proiling data. Second, we decouple the proiling on the object
detector and the object tracker. This allows us to proile all object detector branches and all object tracker branches,
separately, and we use the following Eq. 4 to calculate the overall latency due to the łtracking-by-detectionž
design,

� (�) =
��������� (�) + (� − 1) ∗ �������� (�)

�
, (4)

where ��������� (�) denotes the detector latency of branch �, �������� (�) denotes the tracker latency of branch �,
and i is the number of group of frames that matches the detector interval.
Accuracy Prediction Model: The accuracy �(�) of an execution branch is proiled in the oline training dataset
and looked up in the online phase. The intuition is that the accuracy of each branch stays the same in the online
phase since both the oline training dataset and the online test dataset follow an independent and identical
distribution. Considering the accuracy is meaningful given a large enough dataset and the number of execution
branches is large, the cost of oline proiling is signiicant. Thus, we use the three following techniques to speed
up the proiling. First, we prune out the inferior branches in terms of accuracy and eiciency and only use eicient
yet efective models for the inal design. For example, only SSD and EicientDet are considered the choices of
object detectors. Second, we use the high-end servers to proile the accuracy of each branch since our multi-branch
execution kernel produces deterministic and consistent results between servers and embedded devices. Finally,
our proiling leverages the fact that the branches with the same conigurations except for detector internal � can
reuse the object detection results on the frames where the object detector runs. We irst proile the accuracy of
all execution branches with � = 1 (object detector only), save the detection results, and then proile the accuracy
of other execution branches and reuse the saved detection results.
To match stringent users’ eiciency requirements Ð energy or latency Ð of inference at real-time (e.g., 30

or 50 FPS) on embedded devices, the low overhead of the branch prediction models must be prioritized. Our
implementation of lightweight prediction models comes with the beneit of low overhead. We empirically ind
that the overall latency overhead of our scheduler is less than 1 msec on all of our set of Jetson boards (0.16
ms on AGX Xavier, 0.26 ms on Xavier NX, and 0.19 ms on TX2), which is marginal compared to the typical
real-time frame rate of 30 FPS. Note that this overhead includes all of the branch selection time and the branch
switching time. Overall, with lightweight prediction models and low overhead of the scheduler, Virtuoso is able
to dynamically adapt at runtime based on changes in user-speciied latency or energy requirement.

4 IMPLEMENTATION

In this section, we mainly describe the implementation details of our multi-branch object detection kernel
(Sec. 4.1), training details of object detectors (Sec. 4.2), and the embedded devices we used for evaluation (Sec. 4.3).

ACM Trans. Des. Autom. Electron. Syst.

12 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

4.1 Eficient Multi-Branch Object Detection Kernel

We implement our eicient multi-branch object detection kernel with the following software stacks: CUDA
10.2.89 and CuDNN 8.0.0.180 as the base libraries for GPU-accelerated DNN primitives, and TensorFlow 2.4.0 with
Python 3.6, for developing the overall framework. Also, given the multiple eiciency knobs we have implemented,
there exists a vast number of execution branch combinations. Thus, we propose the following implementation
techniques to reduce both oline and online costs to a practically feasible level.
Pruning the Eiciency Knobs: First, we only consider EicientDet and SSD as the object detector backbone
in Virtuoso, as they show superior performance in energy, latency, and accuracy, compared to FRCNN and
YOLO. Also, these two object detectors are optimized for performance on mobile devices. While Virtuoso only
incorporates EicientDet and SSD due to their eicient design, we still include FRCNN and YOLO with other
eiciency knobs, and use them as baselines for evaluation. Next, we narrow down the eiciency knobs to be
applied to each object detector backbone. The łnumber of proposalsž knob is exclusive to FRCNN, so it is not
included in Virtuoso. For EicientDet D0 and D3, the models come with the built-in input image resolution that
is hard-coded - 512 for EicientDet D0 and 896 for EicientDet D3 - matching their scaling factor and the design
of the feature pyramid architecture (what they refer to as the Bi-FPN). Therefore, the input image resolution knob
is implemented only for SSD. In addition, we have tested the number of feature map knobs that are exclusive to
SSD and checked the accuracy and latency of all possible combinations on the ILSVRC 2015 VID dataset. Our
intuition of using a subset of the feature pyramid layers in MnasFPN is that reducing the number of layers used
to compute the features will result in a beneit in latency with a moderate tradeof of accuracy. However, due to
the explicit design of the MnasFPN generated by the NAS technique, each feature level had a signiicant drop in
accuracy, while removing feature levels aforded limited latency reduction beneits.
Deining a Set of Choices for Each Knob: Most eiciency knobs, e.g., input resolution, and detector interval
can support any integer choices. However, due to the cost of oline proiling and online scheduling, we deine a
discrete set of choices for each knob as follows. The SSD and EicientDet D0 and D3 are selected as the object
detector backbones. Input image resolution for the detector is implemented for the SSD, and we use the shape
of [192, 256, 320] as our pre-deined set of choices. The acceptable image resolution depends on the network
architecture. MedianFlow tracker is selected for its lightweight design compared to the other trackers we have
explored while maintaining comparable accuracy. The input resolution for the tracker is [100%, 50%, 25%] of the
original resolution on height and width dimensions. For detector interval, we have [1, 2, 4, 8, 20, 100], and inally,
we use conidence thresholds of [0.15, 0.30] to post-process the detection outputs from the object detector. The
conidence threshold removes objects with lower conidence scores and controls the number of objects that need
to be tracked by the object tracker.

Considering all the pre-deined eiciency knobs above, we have a total of 155 execution branches for Virtuoso.
Having hundreds of branches in a multi-branch object detection kernel does not mean we have to store and
load that many copies of branches in the disk or the memory. łInput resolution of the object detector backbonež,
łnumber of proposals in the detector backbonež, łnumber of feature maps in the detector backbonež, łresizing
factor of the object trackerž, łconidence threshold to trackž, and łdetector intervalž can all be implemented as a
control parameter with just one copy of the model. As for the choice of the object detector backbone and object
tracker, we lower the switching cost among the execution branches by merging the static computation graphs of
all object detector backbones. The beneit of merging the static graph is that each object detection backbone is
only loaded into the GPU memory when it is executed, which saves resources for detector backbones not being
used. In addition, the executed object detector backbones are preserved in a cached state, and Virtuoso is able
to switch among loaded backbones with minimal overhead without requiring the initialization of the detector
backbone.

ACM Trans. Des. Autom. Electron. Syst.

Virtuoso: Energy- and Latency-Aware Streamlining of Streaming Videos on SOCs • 13

4.2 Training Eficient Object Detectors

EicientDet D0, D3, and SSD object detectors do not come with publicly available pre-trained weights for the
ILSVRC 2015 VID datasets [40]. Following the widely adopted training protocols in the latest video object
detection solutions that we have selected as baselines for evaluation [7, 41, 47], we train each object detector
on a combined dataset of ILSVRC VID training and DET training datasets [40]. The ILSVRC 2015 VID training
dataset consists of 3,862 videos with 30 object classes. From each video, 15 video frames, whose timestamps are
evenly spaced, are selected. As an addition to the ILSVRC 2015 VID training dataset, images containing the 30
overlapping classes with the VID dataset are selected from the DET training dataset. Finally, a total of 111,473
video frames or images, 57,834 from the VID dataset, and 53,639 from the DET dataset are selected for the training
process.
We train EicientDet D0 and D3 from the COCO pre-trained weights that come from the oicial repository

and follow the default training settings while freezing the backbone part (EicientNet) during the ine-tuning. To
speed up, we use 1% of ILSVRC 2015 VID training dataset (11,768 video frames) for the irst 100 epochs of D0 and
for the irst 50 epochs of D3, and then use the aforementioned VID and DET dataset for the remaining 10 epochs.
In addition, the SSD model combined with MobileNetV2 and MnasFPN also comes with the COCO pre-trained
weights from the oicial repository (not our evaluation dataset ILSVRC 2015 VID). We follow most of the default
training settings from the repository, except for using a batch size of 48 and a learning rate of 0.004. The model is
trained with the aforementioned VID and DET dataset and is trained up to 180 epochs.

4.3 Embedded Devices

We evaluate Virtuoso and baseline models on NVIDIA Jetson AGX Xavier [29], Jetson Xavier NX [32], and
Jetson TX2 [31]. Each device has diferent CPU, GPU, and memory capacities, and the relationship between their
computational capacities is Jetson AGX Xavier > Jetson Xavier NX > Jetson TX2. Table 1 gives the hardware
speciications of these devices. Each board has diferent numbers of power mode levels shown in Table 2 for
Jetson Xavier AGX, and Table 3 for Jetson NX Xavier. We picked some power modes in our experiments to better
understand the power modes of Jetson devices Ð mode 0 and mode 2 on AGX Xavier, mode 0, 2, and 4 on Xavier
NX, and mode 0 on TX2 5. These levels can impact the performance of an object detection system by altering the
maximum power budget, maximum frequency for CPU, GPU, and deep learning accelerator, and the number of
online CPU cores.

Furthermore, these devices have a native Dynamic Voltage and Frequency Scaling (DVFS) functionality on the
CPU and GPU, enabled by default. DVFS provides a way to reduce the static and dynamic power consumption
of the embedded boards on the ly by scaling up or down the voltage and frequency based on the targeted
performance of the application [30]. We ind that the default DVFS functionality can cause inconsistency in our
evaluation results because of the changing CPU, GPU, and memory frequencies. Therefore, we disable DVFS
by ixing the frequency of the modules at their max frequencies under the corresponding power mode. We
empirically determine that this step is crucial to the reproducibility of results.

5 EVALUATION

To evaluate Virtuoso, we irst introduce all multi-branch object detection kernels of Virtuoso and baselines in
Sec. 5.1, and evaluation dataset and metrics in Sec. 5.2. We then present our evaluation results in the following
sections:

(1) First, we show the comparison of Virtuoso to diferent baselines. In addition, we evaluate Virtuoso under
both energy consumption and latency requirements and present the results in Sec. 5.3.

5The default modes are: mode 7 on AGX Xavier, mode 3 on Xavier NX, and mode 3 on TX2.

ACM Trans. Des. Autom. Electron. Syst.

14 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

Models Jetson AGX Xavier Jetson Xavier NX Jetson TX2

CPU 8-core NVIDIA Carmel Armv8.2

64-bit CPU 8MB L2 + 4MB L3

with max frequency at 2265MHz

6-core NVIDIA Carmel ARMv8.2

64-bit CPU 6MB L2 + 4MB L3

with max frequency at 1900MHz

Dual-Core NVIDIA Denver 2

64-Bit CPU and Quad-Core ARM

Cortex-A57 MPCore processor

with max frequency at 2000MHz

GPU 512-core NVIDIA Volta GPU

with 64 Tensor Cores with max

frequency at 1377MHz

384-core NVIDIA Volta GPU

with 48 Tensor Cores with max

frequency at 1100MHz

256-core NVIDIA Pascal GPU

with max frequency at 1300MHz

Memory 32 GB 256-bit LPDDR4x

136.5GB/s

8 GB 128-bit LPDDR4x 51.2GB/s 8 GB 128-bit LPDDR4 59.7GB/s

Storage 32 GB eMMC 5.1 16 GB eMMC 5.1 32 GB eMMC 5.1

Power 10W/15W/30W 10W/15W 7.5W/15W

DL Accelerator 2x NVDLA Engines 2x NVDLA Engines -

AI

Performance

16 TFLOPS 10.5 TFLOPS 1.33 TFLOPS

Price $699 $399 $399

Table 1. Specifications for NVIDIA Jetson devices: AGX Xavier, Xavier NX, and TX2.

Key Parameters Power

Mode 0

Power

Mode 1

Power

Mode 2

Power

Mode 3

Power

Mode 4

Power

Mode 5

Power

Mode 6

Power

Mode 7

Power Budget N/A 10W 15W 30W 30W 30W 30W 15W

Online CPU Cores 8 2 4 8 6 4 2 4

Maximal CPU

Frequency (MHz)

2265.6 1200 1200 1200 1450 1780 2100 2188

Maximal GPU

Frequency (MHz)

1377 520 670 900 900 900 900 670

Maximal DL

Accelerator

Frequency (MHz)

1395.2 550 750 1050 1050 1050 1050 115.2

Table 2. Diferent power modes on the Jetson AGX Xavier board. Each power mode comes with a diferent maximum power

budget, number of online CPU cores, CPU, GPU, and DL accelerator frequency, which gives flexibility in selecting energy

eficiency.

Key Parameters Power

Mode 0

Power

Mode 1

Power

Mode 2

Power

Mode 3

Power

Mode 4

Power Budget 15W 15W 15W 10W 10W

Online CPU Cores 2 4 6 2 4

Maximal CPU Frequency (MHz) 1900 1400 1400 1500 1200

Maximal GPU Frequency (MHz) 1100 1100 1100 800 800

Maximal DL Accelerator Frequency (MHz) 1100 1100 1100 900 900

Table 3. Diferent Power Modes for Jetson Xavier NX.

ACM Trans. Des. Autom. Electron. Syst.

Virtuoso: Energy- and Latency-Aware Streamlining of Streaming Videos on SOCs • 15

(2) Second, we rigorously investigate the impact of power mode on energy vs. latency tradeof during the
evaluation of Virtuoso with diferent user requirements and show that power modes on embedded devices
can be utilized to achieve further optimization on energy or latency performance.

(3) Third, in Sec. 5.6, we present a more in-depth energy consumption analysis on our multi-branch object
detection kernels and baselines by utilizing iner-grained power modes.

(4) Finally, we evaluate Virtuoso and all baselines comprehensively on diferent embedded devices under
various resource contention scenarios for accuracy, latency, and energy. In Sec. 5.5, we present the impact
of runtime environment on object detectors, and further show the efectiveness of Virtuoso’s adaptive
features.

5.1 Virtuoso Variants and Baselines

We consider 9 baseline video object detection solutions and their variants, with a total of 15 protocols, for our
evaluation. These models are selected using the following criteria:

(1) The code and model could be deployed on a Jetson TX2 board, and
(2) The model is open-sourced and can be replicated on the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) 2015 VID dataset [40].

The detailed explanation of each protocol is as follows.

5.1.1 Adaptive Video Object Detection Models.

We implement and evaluate a total of 6 adaptive video object detection models.
EicientDet D0, D0+ and D3, D3+: EicientDet D0+ and D3+ are multi-branch object detection kernels,
which is our improvement over EicientDet D0 and D3 with eiciency knobs. We have four eiciency knobs
for EicientDet D0+ and D3+, as follows: 1) object tracker, 2) input image resolution for the object tracker, 3)
conidence threshold to track, and 4) detector interval.
SSD and SSD+: SSD+ is another multi-branch object detection kernel, that is SSD as the object detector backbone
combined with our eiciency knobs. There are a total of ive eiciency knobs for SSD+: 1) input image resolution
for the object detector backbone, 2) object tracker, 3) input image resolution for the object tracker, 4) conidence
threshold to track, and 5) detector interval.
FastAdapt: FastAdapt [21] is an adaptive framework that is able to adapt to diferent latency requirements.
We use FastAdapt as one of the adaptive baselines for performance comparison. FastAdapt uses a single object
detector backbone, FRCNN, and also incorporates an object tracker to speed up the average inference latency.
FRCNN and FRCNN+: FRCNN+ is our improvement over FRCNN [38] and we added two eiciency knobs
for FRCNN+: 1) image shape and 2) number of proposals. With diferent combinations of the image shape and
number of proposals, there are 28 execution branches with the input image resolution in the following set [224,
320, 448, 576] and the number of proposals in the following set [1, 3, 5, 10, 20, 50, 100]. We use the MedianFlow
tracker while keeping a detector interval of 8 frames, which is a middle-of-the-range value.
YOLO and YOLO+: YOLO+ is our improvement over YOLO [36, 37], combined with some of the eiciency knobs
for limited adaptivity. We included one eiciency knob for YOLO, which is the shape of the input image and also
used it in tandem with the MedianFlow object tracker [19] for acceleration. There are a total of 12 execution
branches determined by the input image resolution in the following set [224, 256, 288, 320, 352, 384, 416, 448, 480,
512, 544, 576]. Similar to FRCNN+, we also limit the detector interval to 8 frames for YOLO+.

5.1.2 Accuracy-Optimized Video Object Detection Models.

ACM Trans. Des. Autom. Electron. Syst.

16 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

Several latest video detection models are considered to provide baseline experiments of non-adaptive models.
These models are optimized for accuracy.
REPP: REPP [41] comes with a total of three model variants Ð YOLOv3, SELSA, and FGFA. However, only their
implementation over a YOLOv3 baseline is able to run on a TX2 board. We address this baseline as łREPP with
YOLOv3ž to avoid confusion with our own YOLO implementations (YOLO and YOLO+).
SELSA: For SELSA [47], we utilize ResNet-50 and ResNet-101, with the corresponding variants referred to as
SELSA 50 and SELSA 101.
MEGA: MEGA [7] is provided with two diferent object detector backbones with diferent levels of feature usage.
MEGA utilizes a feature aggregation technique to further improve accuracy by capturing the content similarity
for both neighboring frames and overall global frames within the video. However, this feature considers and
processes multiple frames at runtime, and thus cannot run on embedded devices due to lack of memory. Here, we
only use the object detector backbone provided by the authors with ResNet-50 as the feature extractor and limit
the use of feature aggregation.

5.2 Evaluation Dataset and Metrics

Dataset: We use the ILSVRC 2015 VID validation dataset [40] as the evaluation dataset for the video object
detection taskÐto classify and localize the objects in 30 classes, over 555 videos (176,126 frames in total). For
adaptive video object detection baselines, we consider a streaming setting for inference with video frames fed one
by one and report the mean latency per video frame. For other methods, we use batch processing for inference
with a batch size of 1 to feed the frames one by one.
Accuracy of all baselines is measured in terms of mean average precision (mAP), following the widely adapted
evaluation protocol [23] on the dataset. mAP is deined as the mean of APs for all classes. AP is the area under
the precision-recall curve that measures both localization and classiication accuracy by comparing detection
bounding boxes against ground-truth boxes using a ixed Intersection-over-Union (IoU) threshold of 0.5.
Energy consumption is measured by the native API provided by the Jetson board tegrastats [33] utility from
NVIDIA. Tegrastats provides the information on instantaneous power usage of the CPU and GPU modules, and
we convert the power consumption to the overall energy consumption, and then divide it by the number of frames
to calculate the average energy consumption per frame. Users can also specify the interval of the execution of
tegrastats. We use a 1-second interval in our experiments. This choice collects accurate measurements at a ine
time granularity while bounding the overhead of the measurement and corresponding impact on the performance
during evaluation.
Latency of all baselines are measured as per-frame latency over the Group of Frame (GoF) during inference6,
and further aggregated over GoFs of all videos on the dataset.

5.3 Satisfying Various Eficiency Requirements

We irst present the overall evaluation results of Virtuoso and other eicient and adaptive video object detection
baselines in Fig. 5. First, Virtuoso achieves higher accuracy at any latency range between 15 msec to 200 msec.
Particularly, we are 10.7% and 5.9% more accurate than FastAdapt at 70 msec and 15 msec latency requirement,
11.0% more accurate than FRCNN+ at 40 msec latency, 13.3% and 12.1% more accurate than YOLO+ at 80 msec
and 25 msec latency, 12.8% more accurate and 11.7 msec faster than FRCNN with maximum performance, and
14.4% more accurate and 320.7 msec faster than YOLO, again, with maximum performance. Second, Virtuoso
achieves much wider latency adaptation range from 3.5 to 245.3 msec in which Virtuoso leads the accuracy
frontier. The adaptation range is 4.5 times larger than FastAdapt, 10 times larger than FRCNN+, and 4.7 times

6Due to our tracking-by-detection technique in Sec. 3.1, the latency of the irst frame and remaining frames are uneven. Thus, we take the

average over a GoF as the temporal latency.

ACM Trans. Des. Autom. Electron. Syst.

Virtuoso: Energy- and Latency-Aware Streamlining of Streaming Videos on SOCs • 17

Fig. 5. Comparison of Virtuoso with other baseline protocols including our in-house enhancements. Virtuoso is able to

achieve a much wider range of adaptation with superior accuracy or latency tradeof compared to all other protocols. Note

that the x-axis is in the log scale.

larger than YOLO+. To conclude, Virtuoso is able to achieve both superior accuracy and latency while covering
a wider range of adaptation, outperforming all other eicient and adaptive baselines.
We further examine the performance of Virtuoso given combined latency and eiciency requirements and

under diferent power modes. We show in Fig. 6 a more detailed performance of Virtuoso given several energy
requirements. We can see that given the most stringent energy requirementÐ0.5 J per frame, Virtuoso is able to
achieve between 3.5 and 7.0 msec latency, with 32.5% to 48.3% accuracy accordingly (purple and solid curve).
Then, we gradually relax the energy requirement to 1 J (green curve), 10 J (blue curve), and unlimited (red curve)
and ind that Virtuoso achieves higher accuracy (51.2% to 63.9%), at the expense of higher latency (10.6 msec to
245.3 msec). At a more real-world applicable frame rate of 30 FPS (33.3 msec per frame latency requirement),
Virtuoso is able to run near 30 FPS (at 36.6 msec per frame) with an accuracy of 60.1%. Therefore, we explicitly
show the improvement in accuracy performance at a higher energy requirement with diferent colors.

Furthermore, as we switch the power mode to 2 (from power mode 0) (dashed line), Virtuoso is more power
eicient and achieves up to 51.2%, 52.0%, and 63.9% accuracy with more relaxed energy requirements of 0.5 J, 1J,
and 10 J. The accuracy is higher than that in power mode 0 given the same energy requirement, at the expense of
3 to 4.2 times higher latency. One thing to note that is SSD+ is always inferior to EicientDet+ in this experiment
and thus has no data point in the igure (recall we are plotting the Pareto optimal curve). This is somewhat
expected as EicientDet is more recent work with further optimized accuracy performance. Further, the lower
latency region is dominated by EicientDet D0+ and the higher accuracy region is dominated by EicientDet

ACM Trans. Des. Autom. Electron. Syst.

18 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

Fig. 6. Performance of Virtuoso’s ability to adapt to difer-

ent energy requirements under 2 diferent power modes, on

NVIDIA AGX Xavier. Note that the D3+, D0+, and SSD+ in

the legend indicate the kernels that Virtuoso has selected

for that particular branch.

Fig. 7. Performance of Virtuoso’s ability to adapt to difer-

ent latency requirements under 2 diferent power modes,

on NVIDIA AGX Xavier. Note that the D3+, D0+, and SSD+

in the legend indicate the kernels that Virtuoso has se-

lected for that particular branch.

D3+. To conclude, the multi-requirement design of Virtuoso gives the lexibility to the user for picking diferent
energy or latency requirements to match the use case and Virtuoso can always maximize its accuracy subject to
such eiciency requirements.
We then evaluate Virtuoso with the latency requirement as a prioritized one and check the accuracy vs.

energy tradeof. Fig. 7 shows the adaptation performance of our overall framework for the accuracy vs. energy
tradeof under diferent latency requirements. While the results for accuracy vs. energy tradeof show a similar
trend to results of accuracy vs. latency, one note is that SSD+ shows up in the Pareto performance curve in
power mode 2. This indicates that SSD+ is the preferred choice for some low-energy budget cases due to its high
energy eiciency and no object detector can dominate all users’ requirements. For all models, as the latency
requirement is made stricter, the overall energy consumption of selected branches also decreases, showing a
generally applicable relationship between latency and energy consumption.
To better understand the energy and latency performance of Virtuoso under diferent power modes, we

show in Fig. 10 a more in-depth result where we select 31 execution branches from the multi-branch execution
kernel of Virtuoso and show their energy consumption and latency. While energy vs. latency tends to have a
linear relationship, it is also observable that the power mode is an important factor that impacts both energy
and latency. Roughly, power mode 2 is 40% lower in energy consumption, with a drawback of 1.8 times higher
latency compared to power mode 0.
We dig deeper by examining the performance of each object detector backbone. Fig. 8 and 9 show the

performance of D3+, D0+ and SSD+ with accuracy vs. latency and accuracy vs. energy respectively. All models
show a similar trend of decreasing accuracy with better energy and latency performance, due to the object
tracker-related eiciency knobs being more dominant to enhance the eiciency. For EicientDet D3, the original
model performs at 63.9% accuracy with 245.3 msec latency and 10.8 J energy consumption per frame in power
mode 0. This is reduced down to 5.4 msec and 0.3 J per frame which is 45 times faster and 97.2% more energy
eicient at the cost of lower accuracy of 39.5%. Similarly, with power mode 0, EicientDet D0 is 8 times faster
and 80.6% more energy eicient with the accuracy dropping from 52.5% to 32.5%. For SSD, it is 9.5 times faster
and 77.6% more energy eicient.

ACM Trans. Des. Autom. Electron. Syst.

Virtuoso: Energy- and Latency-Aware Streamlining of Streaming Videos on SOCs • 19

Fig. 8. Accuracy of Virtuoso’s each object detector back-

bone given latency requirements, on NVIDIA AGX Xavier.

Fig. 9. Accuracy of Virtuoso’s each object detector back-

bone given energy requirements, on NVIDIA AGX Xavier.

Fig. 10. Energy vs. Latency performance for diferent power

modes, on NVIDIA AGX Xavier. The execution branches

that are selected as datapoints in each power mode line

are identical, and the diference in the power mode results

in a proportional change between latency and energy con-

sumption.

Fig. 11. Performance of Virtuoso with dynamically chang-

ing user requirements on latency.

The three most utilized knobs in Virtuoso are detector interval, resizing factor for the tracker, and conidence
threshold for the tracker. The detector interval has the highest impact on both the energy consumption and
latency, since the object tracker is lightweight in both energy and computation cost, and also does not utilize the
GPU. It impacts both the latency and energy on large scale and is able to reduce the original latency up to 93%.
Next is the resizing factor, the input image resolution for the object tracker. It is more efective in the low latency
region and can reduce the latency up to 40%. Last is the conidence threshold of the tracker, and on average, it
only impacts the latency by a very small value of 8%. However, the conidence threshold becomes important in
speciic scenarios where there are many objects in the scene to track.

ACM Trans. Des. Autom. Electron. Syst.

20 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

Fig. 12. Latency & Accuracy performance on AGX Xavier. The black doted vertical line indicates the section divided per 600

frames.

To conclude, our eiciency knobs not only provide beneits in energy eiciency but also improve latency
performance. We also show that the power modes on embedded devices can further optimize the latency and
energy performance. In addition, Virtuoso is able to outperform other baselines due to the following factors. First,
Virtuoso equips a single model with the tuning knobs, enabling the model to achieve diferent accuracy-latency
tradeofs by selecting diferent branches at runtime. Second, Virtuoso further incorporates multiple models,
includes an orchestrated scheduler to switch between models and between branches within each model, and thus
is able to explore ine-grained accuracy-latency tradeofs and handle a vast spectrum of user requirements at
runtime. In doing so, Virtuoso achieves higher accuracy and lower latency in comparison to those baselines.

5.4 Evaluation with Dynamic User Requirements

Fig. 11 presents an example of how Fig. 6 and Fig. 7 can be applied to a real-time inference scenario with
dynamically changing latency user requirements. The latency user requirement (blue dashed line) is gradually
increased as the inference progresses, and with the increased latency budget available, the scheduler is able to
pick a more accurate, but slower branch, which is able to run under the given user requirement. In the beginning,
when the latency user requirement is at 30 ms, the scheduler picks a branch with EicientDet-D0 as the kernel,
with a detector interval of 2, having an overall accuracy of 52.45 %. As the inference progresses, the latency
user requirement is increased, and the scheduler reacts instantly to the change in the user requirement. At a
latency user requirement of 130 ms, the scheduler picks a branch with EicientDet-D3 as the kernel, with a
detector interval of 2, having an overall accuracy of 61.64 %. Note that the branch switching happens without
much overhead between diferent kernels, or between diferent detector intervals (noted as si).

Fig. 12 and Fig. 13 present an example where both the energy and the latency user requirement are dynamically
changing. For a sample video of 2513 frames, every 600 frames, a diferent user requirement is input to the
scheduler. Note that except for the last section, all sections consist of 600 frames, with the last section being
714 frames. The irst 600 frames of the inference are performed without any user requirements, which indicates
Virtuoso running at max performance - EicientDet D3 backbone without coupling with the tracker. Next,
an energy requirement of 3 � per frame is given to Virtuoso, and Virtuoso switches to the EicientDet D0

ACM Trans. Des. Autom. Electron. Syst.

Virtuoso: Energy- and Latency-Aware Streamlining of Streaming Videos on SOCs • 21

Fig. 13. Instantaneous power on AGX Xavier. The total energy consumption per section (area under the curve) is annotated

for each filled region.

backbone, matching the given user requirement. For the third section, an additional latency requirement of 30
ms per frame is given, having a 3 � energy requirement as the major user requirement, and a 30 ms latency
requirement as the minor requirement. The scheduler selects the execution branch consisting of EicientDet
D0 with the MedianFlow tracker having a tuning knob of conidence threshold of 0.15 and downsampling ratio
of 4 for the input resolution of the tracker. Last, to further cut down the energy consumption, the energy user
requirement is lowered to 1 � per frame. As shown in Fig. 12, the inference latency is lowered with diferent
branches at the cost of accuracy. For the energy performance, in Fig. 13, the inference time is plotted against the
instantaneous power measured on the AGX Xavier board. The black vertical lines indicate the same sections
from Fig. 12. As the branch switches down to a more eicient branch, both the overall power level and inference
time is decreased, resulting in a big drop of overall energy consumption.
The results suggest that Virtuoso is able to adapt to diferent user requirements during inference, being

capable to cope with various real-world problems such as a low battery or real-time latency requirements. Both
the energy and latency performance is impacted by diferent branches selected by the scheduler, and note that
the change of branches or kernels comes at almost no computational overhead.

5.5 Evaluation on the Accuracy and Latency across Devices

We further evaluate the performance of Virtuoso’s each object detector backbone on more embedded devices Ð
NVIDIA AGX Xavier, Xavier NX, and TX2.

5.5.1 Adaptive Video Object Detection Models.

Fig. 14 reports the accuracy and latency of all adaptive video object detection models with varying contention
levels on the NVIDIA Xavier AGX board. Here, we also provide a more in-depth result of Virtuoso, by separately
evaluating the multi-branch object detection kernels of Virtuoso- EicientDet D0+, D3+ and SSD+.

ACM Trans. Des. Autom. Electron. Syst.

22 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

(a) No contention (b) 50% GPU contention

Fig. 14. Evaluating the object detector baselines on the NVIDIA Jetson AGX Xavier.

(a) No contention (b) 50% GPU contention

Fig. 15. Evaluating the object detector baselines on the NVIDIA Jetson Xavier NX.

First, in Fig. 14 (a), we observe that EicientDet D0+, D3+, and SSD+, which are Virtuoso variants, have
the lead in the accuracy-latency frontier over FastAdapt, FRCNN+, and YOLO+, over a wide range of latency
performance, varying from 5.8 msec to 245.3 msec.

Speciically, EicientDet D0+ has an accuracy up to 55.1% mAP, running at 52.8 msec per frame (roughly 18.9
FPS) and has a latency down to 3.4 msec per frame (roughly 294.1 FPS), running at an accuracy of 32.5% mAP. The
maximum performance of EicientDet D0+ is 5.3% higher in accuracy compared to FastAdapt with the maximum
performance while having lower latency of 13.5 msec at the same time. EicientDet D3+ covers the higher
accuracy range with higher latency compared to D0+. It can achieve up to an accuracy of 63.9% mAP, running at
245.3 msec per frame (roughly 4.0 FPS), and the latency can be reduced down to 5.5 msec (roughly 181.8 FPS)
with an accuracy of 39.5%, combined with Virtuoso’s eiciency knobs. For SSD+, the accuracy is at a maximum
of 48.6% with a latency of 65.5 msec per frame. The lowest achieved latency is 3.6 msec with an accuracy of 28.6%,
which is 0.2 msec slower and 3.9% mAP lower compared to D0+. We also show the latency/accuracy performance
of FRCNN+ and YOLO+ versus FRCNN and YOLO, the latter without our optimizations. For FRCNN and YOLO,

ACM Trans. Des. Autom. Electron. Syst.

Virtuoso: Energy- and Latency-Aware Streamlining of Streaming Videos on SOCs • 23

(a) No contention (b) 50% GPU contention

Fig. 16. Evaluating the object detector baselines on the NVIDIA Jetson TX2.

the latency is 257 and 566 msec per frame while the accuracy is 51.1% and 49.5%, respectively. Coupled with our
eiciency knobs, FRCNN+ is able to achieve a real-time processing time of 29.7 msec (33.6 FPS) at an accuracy of
48.4%, which is more than 8 times faster than FRCNN, while only being 2.7% lower in accuracy. Also, FRCNN+ is
able to achieve up to 49.1% accuracy with 36.2 msec latency at maximum performance. YOLO+ is able to achieve
a minimum latency of 23.3 msec at 39.9% accuracy, which is more than 24 times faster than YOLO. YOLO+ is also
able to achieve 47.9% accuracy at 75.0 msec with maximum accuracy performance.

Fig. 15 (a) and Fig. 16 (a) shows the latency vs. accuracy performance on the Xavier NX and TX2 board. Given
a latency requirement of 50 msec (20 FPS), EicientDet D0+ achieves 52.5% accuracy with 46.9 msec latency per
frame. This is 1.2% higher in accuracy compared to the performance on TX2 where EicientDet D0+ achieves
51.3% accuracy with 38.0 msec latency per frame, under the same latency requirement of 50 msec. Similarly,
EicientDet D3+ achieves 56.3% accuracy with 28.4 msec latency on Xavier NX, where it achieves the same
accuracy of 56.3% with 42.2 msec latency on TX2 under the 50 msec latency requirement. Dialing up the latency
requirement (more stringent and realistic for video) to 33.3 msec, the accuracy performance on TX2 drops to
40.9% with 13.5 msec latency per frame. This accuracy increase is also observed with other baselines applied
with our eiciency knob. Both FRCNN+ and YOLO+ cannot run under 40 msec latency requirement on TX2, but
on Xavier NX, FRCNN+ can run with 47.0% accuracy at a latency of 38.3 msec, and YOLO+ can run with 39.9%
accuracy at a latency of 38.1 msec.

Comparing with results from the three diferent devices, we observe that given a stronger computation power,
our multi-branch object detection kernels of Virtuoso can achieve higher accuracy performance under the same
latency requirement. In addition, we were able to observe that a device with higher computation power gives
larger beneits to execution branches with heavier object detector backbones, where EicientDet D3+ is able to
run at 53.7% accuracy on AGX Xavier with 15.1 msec latency per frame, whereas it runs with 40.9% accuracy at
13.6 msec latency on TX2 under a real-time latency requirement of 30 msec per frame.

To summarize, irst, multi-branch object detection kernels of Virtuoso- EicientDet D0+, D3+, and SSD+ - lead
the accuracy-latency performance in all scenarios, especially under stringent latency requirements. Compared to
other adaptive video object detection baselines - FastAdapt, FRCNN+, and YOLO+ - EicientDet D3+ can achieve
up to 15.9% better accuracy. Second, utilizing diferent embedded devices shows that, given a stronger computation
power, EicientDet D0+, D3+, and SSD+ can leverage higher accuracy under a speciic latency requirement, due
to the latency performance boost. In contrast, non-adaptive baselines only have a single datapoint of accuracy vs.
latency and cannot leverage the accuracy with the changing latency performance.

ACM Trans. Des. Autom. Electron. Syst.

24 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

(a) Jetson TX2 (b) Jetson Xavier NX (c) Jetson AGX Xavier

Fig. 17. Benchmarking SOTA video object detection models on NVIDIA Jetson Devices under diferent contention levels.

The accuracy measurements are the same among all boards and are as follows. EficientDet D0: 55.07% mAP, EficientDet

D3: 63.87% mAP, REPP+YOLOv3: 74.81% mAP, MEGA base: 68.11% mAP, SELSA 50: 77.31% mAP, SELSA 101: 81.5% mAP.

Unlike the adaptive baselines, non-adaptive baselines provide only a single datapoint of accuracy and latency under the

given environment.

Our results show that Virtuoso, which leverages all three multi-branch kernels of EicientDet D0+, D3+, and
SSD+, has the ability to meet the latency requirement more lexibly under various scenarios while maintaining
higher accuracy than other baselines.

5.5.2 Accuracy-Optimized Video Object Detection Models.

Baselines without adaptive features are evaluated for accuracy and latency on diferent embedded devices, and
we use EicientDet D0 and D3 as the base for comparison. As we can see from the caption of Fig. 17, without
latency requirements, these baselines achieve higher mAP than most adaptive baselines, ranging from 55.1% to
81.5%. For latency results, EicientDet D0 has the lowest latency and accuracy among all models and boards.
SELSA 101 achieves the highest accuracy but with the highest latency on all boards. In contrast, REPP with
YOLOv3 has a reasonable accuracy, at 74.81%, while still maintaining relatively low latency. However, when
considering a user latency requirement, most baselines have latency over 200 msec, or 5 FPS, even on the AGX
Xavier board, which is one of the most powerful embedded boards (subigure (c)). Such latency values do not
meet the need for real-time processing.

It is also noteworthy that, while REPP with YOLOv3 has a reasonable latency alongside with a high accuracy
performance, it is a post-processing technique that requires information of all the detection results to reine the
bounding boxes for higher accuracy. However, during a video streaming condition in our case, such information
of detection results is limited to only the video frame till now, and it would have to be applied frame by frame.
We add a simple experiment to showcase this limitation, by running REPP in a real-time fashion, and in Fig. 18 it
is shown that detection boxes accumulated over 800 video frames would result in a processing time of up to 3
seconds on a TX2 device, which is unsuitable for real-time processing.
The accuracy values obtained in our evaluation for non-adaptive baselines difer from those of the original

authors, most signiicantly for REPP. This, we believe, is due to two reasons, as follows: First, we use an IoU
threshold of 0.6 during the non-max suppression phase, consistently for all protocols which are mostly used as
the default for our adaptive baselines (original authors use diferent thresholds for diferent protocols, e.g., 0.5
for REPP). Second, we use a streaming setting of input frames, where the information to future frames that are
required for frame aggregation of these non-adaptive baselines, is limited.

ACM Trans. Des. Autom. Electron. Syst.

Virtuoso: Energy- and Latency-Aware Streamlining of Streaming Videos on SOCs • 25

Fig. 18. Latency performance and overhead of REPP postprocessing applied to real-time streaming. As the number of frames

increases, the overhead of processing each frame keeps increasing in a linear fashion.

To conclude, we show in Fig. 17, that the 50% contention on the embedded device impacts the latency
performance of each object detection kernel, and increases the latency by roughly two times. Also, a similar trend
of better latency performance of using a device with a stronger computation power is observed as in Fig. 14 to
Fig. 16. However, unlike our adaptive kernels of EicientDet D0+, D3+ and SSD+, non-adaptive baselines do not
have any ability to meet the latency requirement, and show a very high latency of over 300 msec, under 50%
GPU contention even on the AGX Xavier board.

5.6 Evaluation of Energy Consumption

Embedded devices need to be energy eicient as in most cases they may need to run on limited power. For more
in-depth proiling and comparison of energy consumption of diferent baselines with diferent power modes, we
explicitly select the Xavier NX board as it is our middle-of-the-computational-power device and also comes with
a moderate selection of power modes.

Power

Modes

D0+ D0 D3+ D3 SSD+ SSD FRCNN+ FRCNN YOLO+ YOLO Fast

Adapt

REPP w

YOLOv3

MEGA SELSA

50

SELSA

101

0 267 1050 882 4786 295 692 2205 6567 2196 14270 2244 3427 5269 12233 14565

2 305 1183 937 5050 346 757 2296 6745 2246 14407 2293 3490 5368 12519 14967

4 297 1025 863 4323 347 716 2064 5906 1914 11836 2069 3122 4528 10493 12451

Avg 290 1086 894 4720 329 722 2189 6406 2119 13504 2202 3346 5055 11748 13995

Table 4. Energy consumption (J) on Jetson Xavier NX. Overall, our in-house baselines with our eficiency knobs show a huge

eficiency boost in energy consumption ranging from 65% to 81% reduction, compared to the baselines without our eficiency

knobs.

Experiment setup: With the selected power modes of Xavier NX from Section. 4.3, we irst measure the power
in the idle status. The results are 3.25, 3.38, and 3.08� in modes 0, 2, and 4 respectively. Then, we run each video

ACM Trans. Des. Autom. Electron. Syst.

26 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

Fig. 19. Instantaneous power on Xavier NX. Overall, our in-house baselines with our eficiency knobs show a lower average

power level compared to its original backbone without any eficiency knobs. Heavier and accuracy-oriented models show

higher instantaneous power and longer inference times.

object detection baseline on a randomly selected video, which has 828 frames. The results are shown in Fig. 19
and Table 4.
Results: Eicient object detector backbones (SSD, SSD+, EicientDet D0, D0+, D3, D3+) consume lower instanta-
neous power measured in real-time. As shown in Figure 19, the maximum peak power and the overall power
level during inference is much lower up to 33%, compared to other baselines. Among all baselines, EicientDet
D0+, D3+, and SSD+ have a superior performance energy-wise, especially with SSD+ and EicientDet D0+ both
having less than 350 � . Compared to its original detector backbone, EicientDet D0+ on average consumes 290 � ,
whereas EicientDet D0 consumes 1086 � , which is almost 4 times larger. The diference is bigger for EicientDet

ACM Trans. Des. Autom. Electron. Syst.

Virtuoso: Energy- and Latency-Aware Streamlining of Streaming Videos on SOCs • 27

(a) AGX Xavier (b) Xavier NX (c) TX2

Fig. 20. Calibration of the contention generator on each embedded device.

D3+ and D3, where D3 consumes more than 5 times the energy compared to D3+. SSD being a very lightweight
detector backbone consumes only 722 � on average, but still, SSD+ is able to cut the energy consumption down
to 329 � on average. In addition, FRCNN+, and YOLO+ have low average total energy consumption at around
2,200 � , compared to FRCNN and YOLO. REPP with YOLOv3 consumed 3,346 � on average while SELSA has the
highest average energy consumption of 13,995 � , which is more than 10 times larger than adaptive baselines. Our
overall energy consumption evaluations validate our insight that adaptive baselines EicientDet D0+, D3+, SSD+,
FRCNN+, and YOLO+ demonstrate superior energy eiciency relative to their rigid variants. Since the major part
of power consumption comes from the GPU module, and EicientDet D0+, D3+ SSD+, FRCNN+, and YOLO+
which is our implementation leveraging an object tracker, we notice signiicant oscillations in their energy plots,
compared to their original implementations (Fig. 19). This is because the object tracker mainly uses the CPU and
is more energy eicient. Switching between the object detector backbone (mainly executed on GPU) and object
tracker (mainly executed on CPU) corresponds to the oscillations in the curve.
We further investigate the impact of diferent power modes on the energy consumption of the 15 protocols.

We can see from Fig. 19 and Table 4 that all models in power mode 0 achieve lower latency than those in power
modes 2 and 4, with the overall highest energy consumption. All models in power mode 4 have the slowest
inference latency with the lowest instantaneous power level compared with those in power modes 0 and 2. Mainly,
compared with mode 0, power mode 4 helps reduce the instantaneous power on an average over models, by
around 30% and total energy consumption by around 10% despite its longer average inference time of 18%.
Overall, our eiciency knobs are able to cut down the energy consumption of object detection backbones

signiicantly, showing at least 60% decreased energy consumption for all adaptive baselines - EicientDet D0+, D3+,
SSD+, FRCNN+, and YOLO+ compared to its counterparts. In addition, our evaluation of the energy consumption
diference between diferent power modes suggests that the power mode can be utilized as another eiciency
knob according to the user’s requirements. Speciically, for video object detection tasks, the users can make their
choice as to whether to focus on latency performance by choosing a higher performance power mode (e.g., mode
0) or energy saving by switching to a lower performance power mode (e.g., mode 4) of the embedded devices.

5.7 Additional Evaluation with Contention

To further evaluate the performance of Virtuoso and other baseline models in a more realistic scenario, we
design and implement a synthetic contention generator (CG) to inject tunable levels of GPU resource contention
for the object detection models. The CG is a stand-in for the general background and concurrent workloads
executed on the device, which concomitantly consume GPU resources. With the CG, we are able to proile the
performance of all models under diferent resource contention scenarios. The CG occupies designated levels of

ACM Trans. Des. Autom. Electron. Syst.

28 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

resources on the GPU module of the embedded device by a percentage of the maximum capacity. To achieve
this goal, the CG on the GPU performs add operation with a CUDA kernel function. By changing the number of
threads of the CG workload, we control the number of GPU cores that are kept busy per second. Thus, we are able
to occupy diferent amounts of GPU resources and we call the amount of GPU resource that the CG occupies the
GPU contention level. We choose 3 GPU contention levels [0%, 20%, 50%] to simulate the resource competition in
the background. Since each embedded device comes with a diferent GPU architecture, the number of cores, and
computation capabilities, a CG workload with a certain number of threads results in diferent GPU contention
levels on diferent boards. We calibrate the CG on each embedded device (namely, NVIDIA Jetson AGX Xavier,
Xavier NX, and TX2 boards), to produce a consistent level of contention. We show our calibration experiment
results of the CG on AGX Xavier, Xavier NX, and TX2 in Fig. 20. As can be seen, with the increasing number of
threads of the CG workload, the GPU contention level (GPU utilization) keeps increasing and inally saturates at
99% as the number of threads is large enough. One key observation is that the relationship between the number
of threads of CG workload and the GPU contention level is linear, which makes our CG a small linear control
system.

5.7.1 Evaluation of under Contention.

In this section, we evaluate all of our baseline protocols and accuracy-oriented baselines with contention, to
see the impact of contention that exists in real-world scenarios.
In Fig. 14 (b), we measure the performance of the protocols under 50% GPU contention. Under 50% GPU

contention, most of the latency performance of each execution branch is increased by roughly 2 times, compared
to no contention. The D0+ branch that runs with 19.3 msec latency per frame under no contention, runs at 38 msec
per frame with the same accuracy of 51.3%. The D3+ branch that runs with 13.5 msec latency per frame under no
contention runs at 23.0 msec per frame with 41% accuracy. A similar trend of increased latency is also observed
for SSD+, FRCNN+, and YOLO+. The increased latency under contention reduces the accuracy performance
under real-time processing latency of 30 FPS. SSD+ runs at 24.9 msec latency per frame with an accuracy of
46.3%, and FRCNN+ runs at 30.4 msec latency per frame with 30.2% accuracy. YOLO+ was not able to meet the
30 FPS latency requirement, but however, was still 28 times faster than YOLO with the fastest coniguration,
which is 48.7 msec, compared to YOLO’s 1385.6 msec. Fig. 15 (b) shows the evaluation results on Xavier NX
with contention. We observe increased latency of all baselines as the contention is given and due to the less
computation power on Xavier NX, it is naturally harder to maintain a real-time latency performance. However,
EicientDet D0+, D3+, and SSD+ can still keep the real-time 30 FPS (33.3 msec per frame) with the accuracy of
51.3%, 40.9%, and 45.5% on Xavier NX when there is 50% GPU contention. Note that EicientDet D0+ has a higher
accuracy of 51.3% compared to EicientDet D3+’s 40.9% under a stringent latency requirement. Such accuracy vs.
latency tradeof beneits Virtuoso with all multi-branch kernels combined, being able to switch between kernels
to achieve an overall higher Pareto curve.

The impact of contention is more severe with accuracy-oriented models, as shown in Fig. 17. We ind from our
evaluation that all baselines, without any adaptive features, sufer from poor latency, further exacerbated under
GPU contention, showing up to 2X increased latency with contention. This is because of their larger network
sizes, sophisticated design of using frame aggregation as a post-processing step, and inability to adapt to the
runtime environment.

To further explore Virtuoso’s ability to adapt, we implement a simple heuristic that checks consecutive latency
violations by a constant ratio during inference. We deine two consecutive latency violations with a similar ratio
as an efect caused by contention and divide the user requirement by this ratio for calibration. Fig. 21 shows that
with this modiied scheduler, Virtuoso is able to conform to the real-time user requirement of 30 FPS, even with

ACM Trans. Des. Autom. Electron. Syst.

Virtuoso: Energy- and Latency-Aware Streamlining of Streaming Videos on SOCs • 29

Fig. 21. Accuracy and latency of Virtuoso when adapting to changing contention from 0% ś> 20% ś> 50%.

increasing contention at a small accuracy penalty. These results demonstrate that Virtuoso can be applied to
real-world applications, with contending background processes being a common occurrence.
Overall, we ind that the multi-branch object detection kernels of Virtuoso can maintain real-time latency

performance with reasonable accuracy even under resource contention. While GPU contention impacts the
overall latency performance for all baselines regardless of the device being used, unlike non-adaptive baselines
where the latency increased up to 2X, EicientDet D0+, D3+, and SSD+ were able to maintain a real-time latency
of 19.3 msec, 13.5 msec, and 23.0 msec on the AGX device with 51.3%, 41%, 46.3% accuracy, respectively.

6 CONCLUSION

In this paper, we have proposed Virtuoso, an adaptive video object detection framework that consists of an
object detector, object tracker, and a dynamic scheduler. A total of 8 diferent eiciency knobs are coupled with
EicientDet D0, D3, and SSD as the object detector backbones to create multiple execution branches. Further,
our dynamic scheduler is able to predict the best performing branch at runtime. We evaluate Virtuoso from
multiple perspectives, considering energy consumption, latency, and accuracy performance, alongside 15 diferent
baselines. Among all evaluated baselines, Virtuoso is able to achieve the best Pareto optimal performance
curve, covering a wide spectrum of performance tradeofs, with an inference time down to as low as 3.5 msec on
the Xavier AGX board, and accuracy up to 63.87%. Moreover, Virtuoso is able to show dynamic switching of
branches with the lexibility to meet various user requirements. It is also observed that diferent power modes
are able to provide further tradeof of energy versus latency. For example, among our experimental settings of
using AGX Xavier with power modes 0 and 2, we were able to achieve a 40% reduction in energy.

We take one step further and perform a more in-depth evaluation of our multi-branch object detection kernels
Ð EicientDet D0+, D3+, and SSD+ with the baselines on diferent runtime environment scenarios. Speciically,
we evaluate using diferent embedded devices, diferent contention levels, and diferent power modes. While all
scenarios had an impact on latency performance, our in-house adaptive baselines, coupled with our eiciency
knobs, were able to meet certain user requirements at an acceptable accuracy. In contrast, all non-adaptive
baselines sufer from a severe drop in latency performance, and more so, under GPU contention.

ACM Trans. Des. Autom. Electron. Syst.

30 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

In the aspect of energy consumption, we show that using our eiciency knobs, our adaptive baselines Ð
EicientDet D0+, D3+, SSD+, FRCNN+, and YOLO+ were at least 60% more energy eicient compared to their
non-adaptive counterparts.

While Virtuoso is mainly evaluated on Jetson NVIDIA boards, we would like to mention that evaluating on
diferent mobile platforms such as TPUs, and FPGAs could be a potential future work to expand the application
of adaptive computer vision.
We hope that this work points to further work in understanding the suitability of various object detection

kernels on embedded boards. This understanding must encompass varying levels of resource availability on these
devices as well as varying power modes of operation available on these devices.

7 ACKNOWLEDGMENTS

This material is based in part uponwork supported by the National Science Foundation under Grant Numbers CNS-
2038986/2038566, CNS-2146449 (NSF CAREER award), an Amazon Research Award, and funding from the Army
Research Lab (Contract number W911NF-2020-221). Any opinions, indings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily relect the views of the sponsors. The
authors also thank the reviewers for their enthusiastic comments and insightful feedback that improved the
clarity and presentation of our work.

REFERENCES

[1] Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen, Srikanth V Krishnamurthy, and Amit K Roy-Chowdhury. 2019. Frugal following: Power

thrifty object detection and tracking for mobile augmented reality. In Proceedings of the 17th Conference on Embedded Networked Sensor

Systems. 96ś109.

[2] Eduardo Arnold, Omar Y Al-Jarrah, Mehrdad Dianati, Saber Fallah, David Oxtoby, and Alex Mouzakitis. 2019. A survey on 3d object

detection methods for autonomous driving applications. IEEE Transactions on Intelligent Transportation Systems 20, 10 (2019), 3782ś3795.

[3] Seung-Hwan Bae and Kuk-Jin Yoon. 2014. Robust online multi-object tracking based on tracklet conidence and online discriminative

appearance learning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR). 1218ś1225.

[4] Mark Buckler, Suren Jayasuriya, and Adrian Sampson. 2017. Reconiguring the imaging pipeline for computer vision. In Proceedings of

the IEEE International Conference on Computer Vision. 975ś984.

[5] Bo Chen, Golnaz Ghiasi, Hanxiao Liu, Tsung-Yi Lin, Dmitry Kalenichenko, Hartwig Adam, and Quoc V Le. 2020. MnasFPN: Learning

latency-aware pyramid architecture for object detection on mobile devices. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 13607ś13616.

[6] Kai Chen, Jiaqi Wang, Shuo Yang, Xingcheng Zhang, Yuanjun Xiong, Chen Change Loy, and Dahua Lin. 2018. Optimizing video object

detection via a scale-time lattice. In Proceedings of the IEEE conference on computer vision and pattern recognition. 7814ś7823.

[7] Yihong Chen, Yue Cao, Han Hu, and Liwei Wang. 2020. Memory enhanced global-local aggregation for video object detection. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10337ś10346.

[8] Ting-Wu Chin, Ruizhou Ding, and Diana Marculescu. 2019. Adascale: Towards real-time video object detection using adaptive scaling.

Proceedings of Machine Learning and Systems 1 (2019), 431ś441.

[9] Jason Clemons, Haishan Zhu, Silvio Savarese, and Todd Austin. 2011. MEVBench: A mobile computer vision benchmarking suite. In

2011 IEEE international symposium on workload characterization (IISWC). IEEE, 91ś102.

[10] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. 2016. R-FCN: Object detection via region-based fully convolutional networks. In Proceedings

of the Advances in Neural Information Processing Systems (NeurIPS). 379ś387.

[11] Jiajun Deng, Yingwei Pan, Ting Yao, Wengang Zhou, Houqiang Li, and Tao Mei. 2019. Relation distillation networks for video object

detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 7023ś7032.

[12] Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. Nestdnn: Resource-aware multi-tenant on-device deep learning for continuous mobile vision.

In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. 115ś127.

[13] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. 2017. Detect to track and track to detect. In Proceedings of the IEEE

International Conference on Computer Vision. 3038ś3046.

[14] Di Feng, Christian Haase-Schütz, Lars Rosenbaum, Heinz Hertlein, Claudius Glaeser, Fabian Timm, Werner Wiesbeck, and Klaus

Dietmayer. 2020. Deep multi-modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and

challenges. IEEE Transactions on Intelligent Transportation Systems 22, 3 (2020), 1341ś1360.

ACM Trans. Des. Autom. Electron. Syst.

Virtuoso: Energy- and Latency-Aware Streamlining of Streaming Videos on SOCs • 31

[15] Asish Ghoshal, Ananth Grama, Saurabh Bagchi, and Somali Chaterji. 2015. An ensemble svm model for the accurate prediction of

non-canonical microrna targets. In Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics.

403ś412.

[16] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu. 2020. Ghostnet: More features from cheap operations. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1580ś1589.

[17] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. 2014. High-speed tracking with kernelized correlation ilters. IEEE

transactions on pattern analysis and machine intelligence 37, 3 (2014), 583ś596.

[18] Zhengkai Jiang, Yu Liu, Ceyuan Yang, Jihao Liu, Peng Gao, Qian Zhang, Shiming Xiang, and Chunhong Pan. 2020. Learning where to

focus for eicient video object detection. In European Conference on Computer Vision. Springer, 18ś34.

[19] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. 2010. Forward-backward error: Automatic detection of tracking failures. In 2010

20th international conference on pattern recognition. IEEE, 2756ś2759.

[20] Kiran Kale, Sushant Pawar, and Pravin Dhulekar. 2015. Moving object tracking using optical low and motion vector estimation. In 2015

4th international conference on reliability, infocom technologies and optimization (ICRITO)(trends and future directions). IEEE, 1ś6.

[21] Jayoung Lee, Pengcheng Wang, Ran Xu, Venkat Dasari, Noah Weston, Yin Li, Saurabh Bagchi, and Somali Chaterji. 2021. Benchmarking

Video Object Detection Systems on Embedded Devices under Resource Contention. In Proceedings of the 5th International Workshop on

Embedded and Mobile Deep Learning. 19ś24.

[22] Buyu Li, Wanli Ouyang, Lu Sheng, Xingyu Zeng, and Xiaogang Wang. 2019. Gs3d: An eicient 3d object detection framework for

autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1019ś1028.

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014.

Microsoft coco: Common objects in context. In European conference on computer vision. Springer, 740ś755.

[24] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg. 2016. SSD: Single

shot multibox detector. In Proceedings of the European Conference on Computer Vision (ECCV), Vol. 9907. 21ś37.

[25] Alan Lukezic, Tomas Vojir, Luka ⑩Cehovin Zajc, Jiri Matas, and Matej Kristan. 2017. Discriminative correlation ilter with channel and

spatial reliability. In Proceedings of the IEEE conference on computer vision and pattern recognition. 6309ś6318.

[26] Chunjie Luo, Fan Zhang, Cheng Huang, Xingwang Xiong, Jianan Chen, Lei Wang, Wanling Gao, Hainan Ye, Tong Wu, Runsong Zhou,

et al. 2018. AIoT bench: towards comprehensive benchmarking mobile and embedded device intelligence. In International Symposium on

Benchmarking, Measuring and Optimization. Springer, 31ś35.

[27] Ashraf Mahgoub, Alexander Michaelson Medof, Rakesh Kumar, Subrata Mitra, Ana Klimovic, Somali Chaterji, and Saurabh Bagchi.

2020. {OPTIMUSCLOUD}: Heterogeneous Coniguration Optimization for Distributed Databases in the Cloud. In 2020 {USENIX}

Annual Technical Conference ({USENIX}{ATC} 20). 189ś203.

[28] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Alsubaihi, and Bernard Ghanem. 2018. Trackingnet: A large-scale dataset and

benchmark for object tracking in the wild. In Proceedings of the European Conference on Computer Vision (ECCV). 300ś317.

[29] NVIDIA Corporation. 2020. NVIDIA Jetson AGXXavier Board. https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit.

[30] NVIDIA Corporation. 2020. NVIDIA Jetson Linux Developer Guide. https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%

20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html#wwpID0E0VO0HA.

[31] NVIDIA Corporation. 2020. NVIDIA Jetson TX2 Board. https://developer.nvidia.com/embedded/jetson-tx2.

[32] NVIDIA Corporation. 2020. NVIDIA Jetson Xavier NX Board. https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit.

[33] NVIDIA Corporation. 2020. Tegrastats Utility. https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.html#page/Tegra%

20Linux%20Driver%20Package%20Development%20Guide/AppendixTegraStats.html.

[34] Murad Qasaimeh, Kristof Denolf, Alireza Khodamoradi, Michaela Blott, Jack Lo, Lisa Halder, Kees Vissers, Joseph Zambreno, and

Phillip H Jones. 2021. Benchmarking vision kernels and neural network inference accelerators on embedded platforms. Journal of

Systems Architecture 113 (2021), 101896.

[35] Jinmeng Rao, Yanjun Qiao, Fu Ren, Junxing Wang, and Qingyun Du. 2017. A mobile outdoor augmented reality method combining deep

learning object detection and spatial relationships for geovisualization. Sensors 17, 9 (2017), 1951.

[36] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only look once: Uniied, real-time object detection. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 779ś788.

[37] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement. https://doi.org/10.48550/ARXIV.1804.02767

[38] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: Towards real-time object detection with region proposal

networks. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS). 91ś99.

[39] Ali Rohan, Mohammed Rabah, and Sung-Ho Kim. 2019. Convolutional neural network-based real-time object detection and tracking for

parrot AR drone 2. IEEE access 7 (2019), 69575ś69584.

[40] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,

Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge. International Journal of

Computer Vision (IJCV) 115, 3 (2015), 211ś252.

ACM Trans. Des. Autom. Electron. Syst.

https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html#wwpID0E0VO0HA
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html#wwpID0E0VO0HA
https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/AppendixTegraStats.html
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/AppendixTegraStats.html
https://doi.org/10.48550/ARXIV.1804.02767

32 • Jayoung Lee� Pengcheng Wang� Ran Xu� Sarthak Jain� Venkat Dasari� Noah Weston� Yin Li� Saurabh Bagchi� Somali Chaterji�

� Purdue University, � Army Research Lab, � U of Wisconsin at Madison

[41] Alberto Sabater, Luis Montesano, and Ana C Murillo. 2020. Robust and eicient post-processing for video object detection. In IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE, 10536ś10542.

[42] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and

linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 4510ś4520.

[43] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, AndrewHoward, and Quoc V Le. 2019. Mnasnet: Platform-aware

neural architecture search for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2820ś2828.

[44] Mingxing Tan and Quoc Le. 2019. Eicientnet: Rethinking model scaling for convolutional neural networks. In International Conference

on Machine Learning. PMLR, 6105ś6114.

[45] Mingxing Tan, Ruoming Pang, and Quoc V Le. 2020. EicientDet: Scalable and eicient object detection. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 10781ś10790.

[46] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt

Keutzer. 2019. Fbnet: Hardware-aware eicient convnet design via diferentiable neural architecture search. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10734ś10742.

[47] Haiping Wu, Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. 2019. Sequence level semantics aggregation for video object detection.

In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 9217ś9225.

[48] Ran Xu, Rakesh Kumar, Pengcheng Wang, Peter Bai, Ganga Meghanath, Somali Chaterji, Subrata Mitra, and Saurabh Bagchi. 2021.

ApproxNet: Content and Contention-Aware Video Object Classiication System for Embedded Clients. ACM Trans. Sen. Netw. 18, 1,

Article 11 (oct 2021), 27 pages. https://doi.org/10.1145/3463530

[49] Ran Xu, Chen-lin Zhang, Pengcheng Wang, Jayoung Lee, Subrata Mitra, Somali Chaterji, Yin Li, and Saurabh Bagchi. 2020. ApproxDet:

content and contention-aware approximate object detection for mobiles. In Proceedings of the 18th Conference on Embedded Networked

Sensor Systems (SenSys). 449ś462.

[50] Chun-Han Yao, Chen Fang, Xiaohui Shen, Yangyue Wan, and Ming-Hsuan Yang. 2020. Video object detection via object-level temporal

aggregation. In European conference on computer vision. Springer, 160ś177.

[51] Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, and Stan Z Li. 2018. Single-shot reinement neural network for object detection. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 4203ś4212.

[52] Xizhou Zhu, Jifeng Dai, Lu Yuan, and Yichen Wei. 2018. Towards high performance video object detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 7210ś7218.

[53] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. 2017. Flow-guided feature aggregation for video object detection. In

Proceedings of the IEEE International Conference on Computer Vision. 408ś417.

[54] Yuhao Zhu, Anand Samajdar, Matthew Mattina, and Paul Whatmough. 2018. Euphrates: Algorithm-SoC Co-Design for Low-Power

Mobile Continuous Vision. In Proceedings of the 45th Annual International Symposium on Computer Architecture (Los Angeles, California)

(ISCA ’18). IEEE Press, 547ś560. https://doi.org/10.1109/ISCA.2018.00052

ACM Trans. Des. Autom. Electron. Syst.

https://doi.org/10.1145/3463530
https://doi.org/10.1109/ISCA.2018.00052

	Abstract
	1 Introduction
	2 Related Work
	3 Techniques
	3.1 Efficiency knobs for Object Detection Models
	3.2 Efficient Multi-Branch Object Detection Kernel
	3.3 Scheduler

	4 Implementation
	4.1 Efficient Multi-Branch Object Detection Kernel
	4.2 Training Efficient Object Detectors
	4.3 Embedded Devices

	5 Evaluation
	5.1 Virtuoso Variants and Baselines
	5.2 Evaluation Dataset and Metrics
	5.3 Satisfying Various Efficiency Requirements
	5.4 Evaluation with Dynamic User Requirements
	5.5 Evaluation on the Accuracy and Latency across Devices
	5.6 Evaluation of Energy Consumption
	5.7 Additional Evaluation with Contention

	6 Conclusion
	7 Acknowledgments
	References

